Metamath Proof Explorer


Theorem fczfsuppd

Description: A constant function with value zero is finitely supported. (Contributed by AV, 30-Jun-2019)

Ref Expression
Hypotheses fczfsuppd.b φ B V
fczfsuppd.z φ Z W
Assertion fczfsuppd φ finSupp Z B × Z

Proof

Step Hyp Ref Expression
1 fczfsuppd.b φ B V
2 fczfsuppd.z φ Z W
3 fnconstg Z W B × Z Fn B
4 fnfun B × Z Fn B Fun B × Z
5 2 3 4 3syl φ Fun B × Z
6 fczsupp0 B × Z supp Z =
7 0fin Fin
8 6 7 eqeltri B × Z supp Z Fin
9 8 a1i φ B × Z supp Z Fin
10 snex Z V
11 xpexg B V Z V B × Z V
12 1 10 11 sylancl φ B × Z V
13 isfsupp B × Z V Z W finSupp Z B × Z Fun B × Z B × Z supp Z Fin
14 12 2 13 syl2anc φ finSupp Z B × Z Fun B × Z B × Z supp Z Fin
15 5 9 14 mpbir2and φ finSupp Z B × Z