Metamath Proof Explorer


Theorem fczpsrbag

Description: The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019)

Ref Expression
Hypothesis psrbag.d D = f 0 I | f -1 Fin
Assertion fczpsrbag I V x I 0 D

Proof

Step Hyp Ref Expression
1 psrbag.d D = f 0 I | f -1 Fin
2 ifid if x = n 0 0 = 0
3 2 eqcomi 0 = if x = n 0 0
4 3 a1i I V 0 = if x = n 0 0
5 4 mpteq2dv I V x I 0 = x I if x = n 0 0
6 0nn0 0 0
7 1 snifpsrbag I V 0 0 x I if x = n 0 0 D
8 6 7 mpan2 I V x I if x = n 0 0 D
9 5 8 eqeltrd I V x I 0 D