Metamath Proof Explorer


Theorem fczsupp0

Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019)

Ref Expression
Assertion fczsupp0 B × Z supp Z =

Proof

Step Hyp Ref Expression
1 eqidd B × Z V Z V B × Z = B × Z
2 fnconstg Z V B × Z Fn B
3 2 adantl B × Z V Z V B × Z Fn B
4 snnzg Z V Z
5 simpl B × Z V Z V B × Z V
6 xpexcnv Z B × Z V B V
7 4 5 6 syl2an2 B × Z V Z V B V
8 simpr B × Z V Z V Z V
9 fnsuppeq0 B × Z Fn B B V Z V B × Z supp Z = B × Z = B × Z
10 3 7 8 9 syl3anc B × Z V Z V B × Z supp Z = B × Z = B × Z
11 1 10 mpbird B × Z V Z V B × Z supp Z =
12 supp0prc ¬ B × Z V Z V B × Z supp Z =
13 11 12 pm2.61i B × Z supp Z =