Metamath Proof Explorer


Theorem fden

Description: Canonical denominator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion fden denom :

Proof

Step Hyp Ref Expression
1 df-denom denom = a 2 nd ι b × | 1 st b gcd 2 nd b = 1 a = 1 st b 2 nd b
2 qdenval a denom a = 2 nd ι b × | 1 st b gcd 2 nd b = 1 a = 1 st b 2 nd b
3 qdencl a denom a
4 2 3 eqeltrrd a 2 nd ι b × | 1 st b gcd 2 nd b = 1 a = 1 st b 2 nd b
5 1 4 fmpti denom :