Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The mapping operation
fdiagfn
Next ⟩
fvdiagfn
Metamath Proof Explorer
Ascii
Unicode
Theorem
fdiagfn
Description:
Functionality of the diagonal map.
(Contributed by
Stefan O'Rear
, 24-Jan-2015)
Ref
Expression
Hypothesis
fdiagfn.f
⊢
F
=
x
∈
B
⟼
I
×
x
Assertion
fdiagfn
⊢
B
∈
V
∧
I
∈
W
→
F
:
B
⟶
B
I
Proof
Step
Hyp
Ref
Expression
1
fdiagfn.f
⊢
F
=
x
∈
B
⟼
I
×
x
2
fconst6g
⊢
x
∈
B
→
I
×
x
:
I
⟶
B
3
2
adantl
⊢
B
∈
V
∧
I
∈
W
∧
x
∈
B
→
I
×
x
:
I
⟶
B
4
elmapg
⊢
B
∈
V
∧
I
∈
W
→
I
×
x
∈
B
I
↔
I
×
x
:
I
⟶
B
5
4
adantr
⊢
B
∈
V
∧
I
∈
W
∧
x
∈
B
→
I
×
x
∈
B
I
↔
I
×
x
:
I
⟶
B
6
3
5
mpbird
⊢
B
∈
V
∧
I
∈
W
∧
x
∈
B
→
I
×
x
∈
B
I
7
6
1
fmptd
⊢
B
∈
V
∧
I
∈
W
→
F
:
B
⟶
B
I