Metamath Proof Explorer


Theorem fdmeu

Description: There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025)

Ref Expression
Assertion fdmeu F : A B X A ∃! y B F X = y

Proof

Step Hyp Ref Expression
1 feu F : A B X A ∃! y B X y F
2 ffn F : A B F Fn A
3 2 anim1i F : A B X A F Fn A X A
4 3 adantr F : A B X A y B F Fn A X A
5 fnopfvb F Fn A X A F X = y X y F
6 4 5 syl F : A B X A y B F X = y X y F
7 6 reubidva F : A B X A ∃! y B F X = y ∃! y B X y F
8 1 7 mpbird F : A B X A ∃! y B F X = y