Metamath Proof Explorer


Theorem fdmfifsupp

Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019)

Ref Expression
Hypotheses fdmfisuppfi.f φ F : D R
fdmfisuppfi.d φ D Fin
fdmfisuppfi.z φ Z V
Assertion fdmfifsupp φ finSupp Z F

Proof

Step Hyp Ref Expression
1 fdmfisuppfi.f φ F : D R
2 fdmfisuppfi.d φ D Fin
3 fdmfisuppfi.z φ Z V
4 1 ffund φ Fun F
5 1 2 3 fdmfisuppfi φ F supp Z Fin
6 1 ffnd φ F Fn D
7 fnex F Fn D D Fin F V
8 6 2 7 syl2anc φ F V
9 isfsupp F V Z V finSupp Z F Fun F F supp Z Fin
10 8 3 9 syl2anc φ finSupp Z F Fun F F supp Z Fin
11 4 5 10 mpbir2and φ finSupp Z F