Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fdmrn
Next ⟩
funcofd
Metamath Proof Explorer
Ascii
Unicode
Theorem
fdmrn
Description:
A different way to write
F
is a function.
(Contributed by
Thierry Arnoux
, 7-Dec-2016)
Ref
Expression
Assertion
fdmrn
⊢
Fun
⁡
F
↔
F
:
dom
⁡
F
⟶
ran
⁡
F
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
ran
⁡
F
⊆
ran
⁡
F
2
df-f
⊢
F
:
dom
⁡
F
⟶
ran
⁡
F
↔
F
Fn
dom
⁡
F
∧
ran
⁡
F
⊆
ran
⁡
F
3
1
2
mpbiran2
⊢
F
:
dom
⁡
F
⟶
ran
⁡
F
↔
F
Fn
dom
⁡
F
4
eqid
⊢
dom
⁡
F
=
dom
⁡
F
5
df-fn
⊢
F
Fn
dom
⁡
F
↔
Fun
⁡
F
∧
dom
⁡
F
=
dom
⁡
F
6
4
5
mpbiran2
⊢
F
Fn
dom
⁡
F
↔
Fun
⁡
F
7
3
6
bitr2i
⊢
Fun
⁡
F
↔
F
:
dom
⁡
F
⟶
ran
⁡
F