Metamath Proof Explorer


Theorem fdomne0

Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion fdomne0 F:XYXFY

Proof

Step Hyp Ref Expression
1 f0dom0 F:XYX=F=
2 1 necon3bid F:XYXF
3 2 biimpa F:XYXF
4 feq3 Y=F:XYF:X
5 f00 F:XF=X=
6 5 simprbi F:XX=
7 4 6 syl6bi Y=F:XYX=
8 nne ¬XX=
9 7 8 syl6ibr Y=F:XY¬X
10 imnan F:XY¬X¬F:XYX
11 9 10 sylib Y=¬F:XYX
12 11 necon2ai F:XYXY
13 3 12 jca F:XYXFY