Metamath Proof Explorer


Theorem fdomne0

Description: A function with non-empty domain is non-empty and has non-empty codomain. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion fdomne0 F : X Y X F Y

Proof

Step Hyp Ref Expression
1 f0dom0 F : X Y X = F =
2 1 necon3bid F : X Y X F
3 2 biimpa F : X Y X F
4 feq3 Y = F : X Y F : X
5 f00 F : X F = X =
6 5 simprbi F : X X =
7 4 6 syl6bi Y = F : X Y X =
8 nne ¬ X X =
9 7 8 syl6ibr Y = F : X Y ¬ X
10 imnan F : X Y ¬ X ¬ F : X Y X
11 9 10 sylib Y = ¬ F : X Y X
12 11 necon2ai F : X Y X Y
13 3 12 jca F : X Y X F Y