Metamath Proof Explorer


Theorem fdvposlt

Description: Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses fdvposlt.d E = C D
fdvposlt.a φ A E
fdvposlt.b φ B E
fdvposlt.f φ F : E
fdvposlt.c φ F : E cn
fdvposlt.lt φ A < B
fdvposlt.1 φ x A B 0 < F x
Assertion fdvposlt φ F A < F B

Proof

Step Hyp Ref Expression
1 fdvposlt.d E = C D
2 fdvposlt.a φ A E
3 fdvposlt.b φ B E
4 fdvposlt.f φ F : E
5 fdvposlt.c φ F : E cn
6 fdvposlt.lt φ A < B
7 fdvposlt.1 φ x A B 0 < F x
8 ioossre C D
9 1 8 eqsstri E
10 9 2 sseldi φ A
11 9 3 sseldi φ B
12 10 11 posdifd φ A < B 0 < B A
13 6 12 mpbid φ 0 < B A
14 10 11 6 ltled φ A B
15 volioo A B A B vol A B = B A
16 10 11 14 15 syl3anc φ vol A B = B A
17 13 16 breqtrrd φ 0 < vol A B
18 ioossicc A B A B
19 18 a1i φ A B A B
20 ioombl A B dom vol
21 20 a1i φ A B dom vol
22 cncff F : E cn F : E
23 5 22 syl φ F : E
24 23 adantr φ x A B F : E
25 1 2 3 fct2relem φ A B E
26 25 sselda φ x A B x E
27 24 26 ffvelrnd φ x A B F x
28 ax-resscn
29 ssid
30 cncfss A B cn A B cn
31 28 29 30 mp2an A B cn A B cn
32 23 25 feqresmpt φ F A B = x A B F x
33 rescncf A B E F : E cn F A B : A B cn
34 25 5 33 sylc φ F A B : A B cn
35 32 34 eqeltrrd φ x A B F x : A B cn
36 31 35 sseldi φ x A B F x : A B cn
37 cniccibl A B x A B F x : A B cn x A B F x 𝐿 1
38 10 11 36 37 syl3anc φ x A B F x 𝐿 1
39 19 21 27 38 iblss φ x A B F x 𝐿 1
40 23 adantr φ x A B F : E
41 19 sselda φ x A B x A B
42 41 26 syldan φ x A B x E
43 40 42 ffvelrnd φ x A B F x
44 elrp F x + F x 0 < F x
45 43 7 44 sylanbrc φ x A B F x +
46 17 39 45 itggt0 φ 0 < A B F x dx
47 fss F : E F : E
48 4 28 47 sylancl φ F : E
49 cncfss E cn E cn
50 28 29 49 mp2an E cn E cn
51 50 5 sseldi φ F : E cn
52 1 2 3 14 48 51 ftc2re φ A B F x dx = F B F A
53 46 52 breqtrd φ 0 < F B F A
54 4 2 ffvelrnd φ F A
55 4 3 ffvelrnd φ F B
56 54 55 posdifd φ F A < F B 0 < F B F A
57 53 56 mpbird φ F A < F B