Metamath Proof Explorer


Theorem feldmfvelcdm

Description: A class is an element of the domain iff it's function value is an element of the codomain of a function. (Contributed by AV, 22-Apr-2025)

Ref Expression
Assertion feldmfvelcdm F : A B B X A F X B

Proof

Step Hyp Ref Expression
1 simpl F : A B B F : A B
2 1 ffvelcdmda F : A B B X A F X B
3 2 ex F : A B B X A F X B
4 df-nel B ¬ B
5 nelelne ¬ B F X B F X
6 4 5 sylbi B F X B F X
7 fdm F : A B dom F = A
8 fvfundmfvn0 F X X dom F Fun F X
9 simprl dom F = A X dom F Fun F X X dom F
10 simpl dom F = A X dom F Fun F X dom F = A
11 9 10 eleqtrd dom F = A X dom F Fun F X X A
12 11 ex dom F = A X dom F Fun F X X A
13 7 8 12 syl2im F : A B F X X A
14 6 13 sylan9r F : A B B F X B X A
15 3 14 impbid F : A B B X A F X B