Metamath Proof Explorer


Theorem fences3

Description: Implication of eqvrelqseqdisj2 and n0eldmqseq , see comment of fences . (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion fences3 EqvRel R dom R / R = A ElDisj A ¬ A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj2 EqvRel R dom R / R = A ElDisj A
2 n0eldmqseq dom R / R = A ¬ A
3 2 adantl EqvRel R dom R / R = A ¬ A
4 1 3 jca EqvRel R dom R / R = A ElDisj A ¬ A