Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
feq123
Next ⟩
feq1i
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq123
Description:
Equality theorem for functions.
(Contributed by
FL
, 16-Nov-2008)
Ref
Expression
Assertion
feq123
⊢
F
=
G
∧
A
=
C
∧
B
=
D
→
F
:
A
⟶
B
↔
G
:
C
⟶
D
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
F
=
G
∧
A
=
C
∧
B
=
D
→
F
=
G
2
simp2
⊢
F
=
G
∧
A
=
C
∧
B
=
D
→
A
=
C
3
simp3
⊢
F
=
G
∧
A
=
C
∧
B
=
D
→
B
=
D
4
1
2
3
feq123d
⊢
F
=
G
∧
A
=
C
∧
B
=
D
→
F
:
A
⟶
B
↔
G
:
C
⟶
D