Metamath Proof Explorer


Theorem feq123d

Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses feq12d.1 φ F = G
feq12d.2 φ A = B
feq123d.3 φ C = D
Assertion feq123d φ F : A C G : B D

Proof

Step Hyp Ref Expression
1 feq12d.1 φ F = G
2 feq12d.2 φ A = B
3 feq123d.3 φ C = D
4 1 2 feq12d φ F : A C G : B C
5 3 feq3d φ G : B C G : B D
6 4 5 bitrd φ F : A C G : B D