Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
feq12d
Next ⟩
feq123d
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq12d
Description:
Equality deduction for functions.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Hypotheses
feq12d.1
⊢
φ
→
F
=
G
feq12d.2
⊢
φ
→
A
=
B
Assertion
feq12d
⊢
φ
→
F
:
A
⟶
C
↔
G
:
B
⟶
C
Proof
Step
Hyp
Ref
Expression
1
feq12d.1
⊢
φ
→
F
=
G
2
feq12d.2
⊢
φ
→
A
=
B
3
1
feq1d
⊢
φ
→
F
:
A
⟶
C
↔
G
:
A
⟶
C
4
2
feq2d
⊢
φ
→
G
:
A
⟶
C
↔
G
:
B
⟶
C
5
3
4
bitrd
⊢
φ
→
F
:
A
⟶
C
↔
G
:
B
⟶
C