Metamath Proof Explorer


Theorem feq12i

Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses feq12i.1 F = G
feq12i.2 A = B
Assertion feq12i F : A C G : B C

Proof

Step Hyp Ref Expression
1 feq12i.1 F = G
2 feq12i.2 A = B
3 eqid C = C
4 feq123 F = G A = B C = C F : A C G : B C
5 1 2 3 4 mp3an F : A C G : B C