Metamath Proof Explorer


Theorem feq12i

Description: Equality inference for functions. (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses feq12i.1 F=G
feq12i.2 A=B
Assertion feq12i F:ACG:BC

Proof

Step Hyp Ref Expression
1 feq12i.1 F=G
2 feq12i.2 A=B
3 eqid C=C
4 feq123 F=GA=BC=CF:ACG:BC
5 1 2 3 4 mp3an F:ACG:BC