Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
feq12i
Next ⟩
feq23i
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq12i
Description:
Equality inference for functions.
(Contributed by
AV
, 7-Feb-2021)
Ref
Expression
Hypotheses
feq12i.1
⊢
F
=
G
feq12i.2
⊢
A
=
B
Assertion
feq12i
⊢
F
:
A
⟶
C
↔
G
:
B
⟶
C
Proof
Step
Hyp
Ref
Expression
1
feq12i.1
⊢
F
=
G
2
feq12i.2
⊢
A
=
B
3
eqid
⊢
C
=
C
4
feq123
⊢
F
=
G
∧
A
=
B
∧
C
=
C
→
F
:
A
⟶
C
↔
G
:
B
⟶
C
5
1
2
3
4
mp3an
⊢
F
:
A
⟶
C
↔
G
:
B
⟶
C