Metamath Proof Explorer


Theorem feq1dd

Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses feq1dd.eq φ F = G
feq1dd.f φ F : A B
Assertion feq1dd φ G : A B

Proof

Step Hyp Ref Expression
1 feq1dd.eq φ F = G
2 feq1dd.f φ F : A B
3 1 feq1d φ F : A B G : A B
4 2 3 mpbid φ G : A B