Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Functions
feq1dd
Next ⟩
fnresdmss
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq1dd
Description:
Equality deduction for functions.
(Contributed by
Glauco Siliprandi
, 11-Dec-2019)
Ref
Expression
Hypotheses
feq1dd.eq
⊢
φ
→
F
=
G
feq1dd.f
⊢
φ
→
F
:
A
⟶
B
Assertion
feq1dd
⊢
φ
→
G
:
A
⟶
B
Proof
Step
Hyp
Ref
Expression
1
feq1dd.eq
⊢
φ
→
F
=
G
2
feq1dd.f
⊢
φ
→
F
:
A
⟶
B
3
1
feq1d
⊢
φ
→
F
:
A
⟶
B
↔
G
:
A
⟶
B
4
2
3
mpbid
⊢
φ
→
G
:
A
⟶
B