Metamath Proof Explorer


Theorem feq1i

Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis feq1i.1 F = G
Assertion feq1i F : A B G : A B

Proof

Step Hyp Ref Expression
1 feq1i.1 F = G
2 feq1 F = G F : A B G : A B
3 1 2 ax-mp F : A B G : A B