Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
feq1i
Next ⟩
feq2i
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq1i
Description:
Equality inference for functions.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Hypothesis
feq1i.1
⊢
F
=
G
Assertion
feq1i
⊢
F
:
A
⟶
B
↔
G
:
A
⟶
B
Proof
Step
Hyp
Ref
Expression
1
feq1i.1
⊢
F
=
G
2
feq1
⊢
F
=
G
→
F
:
A
⟶
B
↔
G
:
A
⟶
B
3
1
2
ax-mp
⊢
F
:
A
⟶
B
↔
G
:
A
⟶
B