Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
feq23i
Next ⟩
feq23d
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq23i
Description:
Equality inference for functions.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Hypotheses
feq23i.1
⊢
A
=
C
feq23i.2
⊢
B
=
D
Assertion
feq23i
⊢
F
:
A
⟶
B
↔
F
:
C
⟶
D
Proof
Step
Hyp
Ref
Expression
1
feq23i.1
⊢
A
=
C
2
feq23i.2
⊢
B
=
D
3
feq23
⊢
A
=
C
∧
B
=
D
→
F
:
A
⟶
B
↔
F
:
C
⟶
D
4
1
2
3
mp2an
⊢
F
:
A
⟶
B
↔
F
:
C
⟶
D