Metamath Proof Explorer


Theorem feq2i

Description: Equality inference for functions. (Contributed by NM, 5-Sep-2011)

Ref Expression
Hypothesis feq2i.1 A = B
Assertion feq2i F : A C F : B C

Proof

Step Hyp Ref Expression
1 feq2i.1 A = B
2 feq2 A = B F : A C F : B C
3 1 2 ax-mp F : A C F : B C