Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
feq2i
Next ⟩
feq12i
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq2i
Description:
Equality inference for functions.
(Contributed by
NM
, 5-Sep-2011)
Ref
Expression
Hypothesis
feq2i.1
⊢
A
=
B
Assertion
feq2i
⊢
F
:
A
⟶
C
↔
F
:
B
⟶
C
Proof
Step
Hyp
Ref
Expression
1
feq2i.1
⊢
A
=
B
2
feq2
⊢
A
=
B
→
F
:
A
⟶
C
↔
F
:
B
⟶
C
3
1
2
ax-mp
⊢
F
:
A
⟶
C
↔
F
:
B
⟶
C