Metamath Proof Explorer


Theorem feq3d

Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020)

Ref Expression
Hypothesis feq2d.1 φ A = B
Assertion feq3d φ F : X A F : X B

Proof

Step Hyp Ref Expression
1 feq2d.1 φ A = B
2 feq3 A = B F : X A F : X B
3 1 2 syl φ F : X A F : X B