Metamath Proof Explorer


Theorem feqresmpt

Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses feqmptd.1 φ F : A B
feqresmpt.2 φ C A
Assertion feqresmpt φ F C = x C F x

Proof

Step Hyp Ref Expression
1 feqmptd.1 φ F : A B
2 feqresmpt.2 φ C A
3 1 2 fssresd φ F C : C B
4 3 feqmptd φ F C = x C F C x
5 fvres x C F C x = F x
6 5 mpteq2ia x C F C x = x C F x
7 4 6 eqtrdi φ F C = x C F x