Metamath Proof Explorer


Theorem fermltlchr

Description: A generalization of Fermat's little theorem in a commutative ring F of prime characteristic. See fermltl . (Contributed by Thierry Arnoux, 9-Jan-2024)

Ref Expression
Hypotheses fermltlchr.z P = chr F
fermltlchr.b B = Base F
fermltlchr.p × ˙ = mulGrp F
fermltlchr.1 A = ℤRHom F E
fermltlchr.2 φ P
fermltlchr.3 φ E
fermltlchr.4 φ F CRing
Assertion fermltlchr φ P × ˙ A = A

Proof

Step Hyp Ref Expression
1 fermltlchr.z P = chr F
2 fermltlchr.b B = Base F
3 fermltlchr.p × ˙ = mulGrp F
4 fermltlchr.1 A = ℤRHom F E
5 fermltlchr.2 φ P
6 fermltlchr.3 φ E
7 fermltlchr.4 φ F CRing
8 prmnn P P
9 8 nnnn0d P P 0
10 5 9 syl φ P 0
11 10 adantr φ A = ℤRHom F E P 0
12 6 adantr φ A = ℤRHom F E E
13 eqid mulGrp fld 𝑠 = mulGrp fld 𝑠
14 zsscn
15 eqid mulGrp fld = mulGrp fld
16 cnfldbas = Base fld
17 15 16 mgpbas = Base mulGrp fld
18 14 17 sseqtri Base mulGrp fld
19 eqid mulGrp fld = mulGrp fld
20 eqid inv g mulGrp fld = inv g mulGrp fld
21 cnring fld Ring
22 15 ringmgp fld Ring mulGrp fld Mnd
23 21 22 ax-mp mulGrp fld Mnd
24 cnfld1 1 = 1 fld
25 15 24 ringidval 1 = 0 mulGrp fld
26 1z 1
27 25 26 eqeltrri 0 mulGrp fld
28 eqid 0 mulGrp fld = 0 mulGrp fld
29 13 17 28 ress0g mulGrp fld Mnd 0 mulGrp fld 0 mulGrp fld = 0 mulGrp fld 𝑠
30 23 27 14 29 mp3an 0 mulGrp fld = 0 mulGrp fld 𝑠
31 13 18 19 20 30 ressmulgnn0 P 0 E P mulGrp fld 𝑠 E = P mulGrp fld E
32 11 12 31 syl2anc φ A = ℤRHom F E P mulGrp fld 𝑠 E = P mulGrp fld E
33 12 zcnd φ A = ℤRHom F E E
34 cnfldexp E P 0 P mulGrp fld E = E P
35 33 11 34 syl2anc φ A = ℤRHom F E P mulGrp fld E = E P
36 32 35 eqtrd φ A = ℤRHom F E P mulGrp fld 𝑠 E = E P
37 36 fveq2d φ A = ℤRHom F E ℤRHom F P mulGrp fld 𝑠 E = ℤRHom F E P
38 7 crngringd φ F Ring
39 eqid ℤRHom F = ℤRHom F
40 39 zrhrhm F Ring ℤRHom F ring RingHom F
41 38 40 syl φ ℤRHom F ring RingHom F
42 zringmpg mulGrp fld 𝑠 = mulGrp ring
43 eqid mulGrp F = mulGrp F
44 42 43 rhmmhm ℤRHom F ring RingHom F ℤRHom F mulGrp fld 𝑠 MndHom mulGrp F
45 41 44 syl φ ℤRHom F mulGrp fld 𝑠 MndHom mulGrp F
46 45 adantr φ A = ℤRHom F E ℤRHom F mulGrp fld 𝑠 MndHom mulGrp F
47 13 17 ressbas2 = Base mulGrp fld 𝑠
48 14 47 ax-mp = Base mulGrp fld 𝑠
49 eqid mulGrp fld 𝑠 = mulGrp fld 𝑠
50 48 49 3 mhmmulg ℤRHom F mulGrp fld 𝑠 MndHom mulGrp F P 0 E ℤRHom F P mulGrp fld 𝑠 E = P × ˙ ℤRHom F E
51 46 11 12 50 syl3anc φ A = ℤRHom F E ℤRHom F P mulGrp fld 𝑠 E = P × ˙ ℤRHom F E
52 6 10 zexpcld φ E P
53 eqid - ring = - ring
54 53 zringsubgval E P E E P E = E P - ring E
55 52 6 54 syl2anc φ E P E = E P - ring E
56 55 fveq2d φ ℤRHom F E P E = ℤRHom F E P - ring E
57 52 zred φ E P
58 6 zred φ E
59 5 8 syl φ P
60 59 nnrpd φ P +
61 fermltl P E E P mod P = E mod P
62 5 6 61 syl2anc φ E P mod P = E mod P
63 eqidd φ E mod P = E mod P
64 57 58 58 58 60 62 63 modsub12d φ E P E mod P = E E mod P
65 zcn E E
66 65 subidd E E E = 0
67 6 66 syl φ E E = 0
68 67 oveq1d φ E E mod P = 0 mod P
69 0mod P + 0 mod P = 0
70 60 69 syl φ 0 mod P = 0
71 64 68 70 3eqtrd φ E P E mod P = 0
72 52 6 zsubcld φ E P E
73 dvdsval3 P E P E P E P E E P E mod P = 0
74 59 72 73 syl2anc φ P E P E E P E mod P = 0
75 71 74 mpbird φ P E P E
76 eqid 0 F = 0 F
77 1 39 76 chrdvds F Ring E P E P E P E ℤRHom F E P E = 0 F
78 38 72 77 syl2anc φ P E P E ℤRHom F E P E = 0 F
79 75 78 mpbid φ ℤRHom F E P E = 0 F
80 rhmghm ℤRHom F ring RingHom F ℤRHom F ring GrpHom F
81 41 80 syl φ ℤRHom F ring GrpHom F
82 zringbas = Base ring
83 eqid - F = - F
84 82 53 83 ghmsub ℤRHom F ring GrpHom F E P E ℤRHom F E P - ring E = ℤRHom F E P - F ℤRHom F E
85 81 52 6 84 syl3anc φ ℤRHom F E P - ring E = ℤRHom F E P - F ℤRHom F E
86 56 79 85 3eqtr3rd φ ℤRHom F E P - F ℤRHom F E = 0 F
87 7 crnggrpd φ F Grp
88 eqid Base F = Base F
89 82 88 rhmf ℤRHom F ring RingHom F ℤRHom F : Base F
90 41 89 syl φ ℤRHom F : Base F
91 90 52 ffvelcdmd φ ℤRHom F E P Base F
92 90 6 ffvelcdmd φ ℤRHom F E Base F
93 88 76 83 grpsubeq0 F Grp ℤRHom F E P Base F ℤRHom F E Base F ℤRHom F E P - F ℤRHom F E = 0 F ℤRHom F E P = ℤRHom F E
94 87 91 92 93 syl3anc φ ℤRHom F E P - F ℤRHom F E = 0 F ℤRHom F E P = ℤRHom F E
95 86 94 mpbid φ ℤRHom F E P = ℤRHom F E
96 95 adantr φ A = ℤRHom F E ℤRHom F E P = ℤRHom F E
97 37 51 96 3eqtr3d φ A = ℤRHom F E P × ˙ ℤRHom F E = ℤRHom F E
98 oveq2 A = ℤRHom F E P × ˙ A = P × ˙ ℤRHom F E
99 98 adantl φ A = ℤRHom F E P × ˙ A = P × ˙ ℤRHom F E
100 simpr φ A = ℤRHom F E A = ℤRHom F E
101 97 99 100 3eqtr4d φ A = ℤRHom F E P × ˙ A = A
102 4 101 mpan2 φ P × ˙ A = A