Metamath Proof Explorer


Theorem festino

Description: "Festino", one of the syllogisms of Aristotelian logic. No ph is ps , and some ch is ps , therefore some ch is not ph . In Aristotelian notation, EIO-2: PeM and SiM therefore SoP. (Contributed by David A. Wheeler, 25-Nov-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses festino.maj x φ ¬ ψ
festino.min x χ ψ
Assertion festino x χ ¬ φ

Proof

Step Hyp Ref Expression
1 festino.maj x φ ¬ ψ
2 festino.min x χ ψ
3 con2 φ ¬ ψ ψ ¬ φ
4 3 anim2d φ ¬ ψ χ ψ χ ¬ φ
5 4 alimi x φ ¬ ψ x χ ψ χ ¬ φ
6 1 5 ax-mp x χ ψ χ ¬ φ
7 exim x χ ψ χ ¬ φ x χ ψ x χ ¬ φ
8 6 2 7 mp2 x χ ¬ φ