Metamath Proof Explorer


Theorem festinoALT

Description: Alternate proof of festino , shorter but using more axioms. See comment of dariiALT . (Contributed by David A. Wheeler, 27-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses festino.maj x φ ¬ ψ
festino.min x χ ψ
Assertion festinoALT x χ ¬ φ

Proof

Step Hyp Ref Expression
1 festino.maj x φ ¬ ψ
2 festino.min x χ ψ
3 1 spi φ ¬ ψ
4 3 con2i ψ ¬ φ
5 4 anim2i χ ψ χ ¬ φ
6 2 5 eximii x χ ¬ φ