Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
ffdm
Next ⟩
ffdmd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ffdm
Description:
A mapping is a partial function.
(Contributed by
NM
, 25-Nov-2007)
Ref
Expression
Assertion
ffdm
⊢
F
:
A
⟶
B
→
F
:
dom
⁡
F
⟶
B
∧
dom
⁡
F
⊆
A
Proof
Step
Hyp
Ref
Expression
1
fdm
⊢
F
:
A
⟶
B
→
dom
⁡
F
=
A
2
1
feq2d
⊢
F
:
A
⟶
B
→
F
:
dom
⁡
F
⟶
B
↔
F
:
A
⟶
B
3
2
ibir
⊢
F
:
A
⟶
B
→
F
:
dom
⁡
F
⟶
B
4
eqimss
⊢
dom
⁡
F
=
A
→
dom
⁡
F
⊆
A
5
1
4
syl
⊢
F
:
A
⟶
B
→
dom
⁡
F
⊆
A
6
3
5
jca
⊢
F
:
A
⟶
B
→
F
:
dom
⁡
F
⟶
B
∧
dom
⁡
F
⊆
A