Metamath Proof Explorer


Theorem ffdm

Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007)

Ref Expression
Assertion ffdm F : A B F : dom F B dom F A

Proof

Step Hyp Ref Expression
1 fdm F : A B dom F = A
2 1 feq2d F : A B F : dom F B F : A B
3 2 ibir F : A B F : dom F B
4 eqimss dom F = A dom F A
5 1 4 syl F : A B dom F A
6 3 5 jca F : A B F : dom F B dom F A