Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
ffdmd
Next ⟩
fdmrn
Metamath Proof Explorer
Ascii
Unicode
Theorem
ffdmd
Description:
The domain of a function.
(Contributed by
Glauco Siliprandi
, 26-Jun-2021)
Ref
Expression
Hypothesis
ffdmd.1
⊢
φ
→
F
:
A
⟶
B
Assertion
ffdmd
⊢
φ
→
F
:
dom
⁡
F
⟶
B
Proof
Step
Hyp
Ref
Expression
1
ffdmd.1
⊢
φ
→
F
:
A
⟶
B
2
ffdm
⊢
F
:
A
⟶
B
→
F
:
dom
⁡
F
⟶
B
∧
dom
⁡
F
⊆
A
3
1
2
syl
⊢
φ
→
F
:
dom
⁡
F
⟶
B
∧
dom
⁡
F
⊆
A
4
3
simpld
⊢
φ
→
F
:
dom
⁡
F
⟶
B