Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
ffn
Next ⟩
ffnd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ffn
Description:
A mapping is a function with domain.
(Contributed by
NM
, 2-Aug-1994)
Ref
Expression
Assertion
ffn
⊢
F
:
A
⟶
B
→
F
Fn
A
Proof
Step
Hyp
Ref
Expression
1
df-f
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
ran
⁡
F
⊆
B
2
1
simplbi
⊢
F
:
A
⟶
B
→
F
Fn
A