Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
ffnfv
Next ⟩
ffnfvf
Metamath Proof Explorer
Ascii
Unicode
Theorem
ffnfv
Description:
A function maps to a class to which all values belong.
(Contributed by
NM
, 3-Dec-2003)
Ref
Expression
Assertion
ffnfv
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
ffn
⊢
F
:
A
⟶
B
→
F
Fn
A
2
ffvelrn
⊢
F
:
A
⟶
B
∧
x
∈
A
→
F
⁡
x
∈
B
3
2
ralrimiva
⊢
F
:
A
⟶
B
→
∀
x
∈
A
F
⁡
x
∈
B
4
1
3
jca
⊢
F
:
A
⟶
B
→
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B
5
simpl
⊢
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B
→
F
Fn
A
6
fvelrnb
⊢
F
Fn
A
→
y
∈
ran
⁡
F
↔
∃
x
∈
A
F
⁡
x
=
y
7
6
biimpd
⊢
F
Fn
A
→
y
∈
ran
⁡
F
→
∃
x
∈
A
F
⁡
x
=
y
8
nfra1
⊢
Ⅎ
x
∀
x
∈
A
F
⁡
x
∈
B
9
nfv
⊢
Ⅎ
x
y
∈
B
10
rsp
⊢
∀
x
∈
A
F
⁡
x
∈
B
→
x
∈
A
→
F
⁡
x
∈
B
11
eleq1
⊢
F
⁡
x
=
y
→
F
⁡
x
∈
B
↔
y
∈
B
12
11
biimpcd
⊢
F
⁡
x
∈
B
→
F
⁡
x
=
y
→
y
∈
B
13
10
12
syl6
⊢
∀
x
∈
A
F
⁡
x
∈
B
→
x
∈
A
→
F
⁡
x
=
y
→
y
∈
B
14
8
9
13
rexlimd
⊢
∀
x
∈
A
F
⁡
x
∈
B
→
∃
x
∈
A
F
⁡
x
=
y
→
y
∈
B
15
7
14
sylan9
⊢
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B
→
y
∈
ran
⁡
F
→
y
∈
B
16
15
ssrdv
⊢
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B
→
ran
⁡
F
⊆
B
17
df-f
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
ran
⁡
F
⊆
B
18
5
16
17
sylanbrc
⊢
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B
→
F
:
A
⟶
B
19
4
18
impbii
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B