Metamath Proof Explorer


Theorem ffnfv

Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003)

Ref Expression
Assertion ffnfv F : A B F Fn A x A F x B

Proof

Step Hyp Ref Expression
1 ffn F : A B F Fn A
2 ffvelrn F : A B x A F x B
3 2 ralrimiva F : A B x A F x B
4 1 3 jca F : A B F Fn A x A F x B
5 simpl F Fn A x A F x B F Fn A
6 fvelrnb F Fn A y ran F x A F x = y
7 6 biimpd F Fn A y ran F x A F x = y
8 nfra1 x x A F x B
9 nfv x y B
10 rsp x A F x B x A F x B
11 eleq1 F x = y F x B y B
12 11 biimpcd F x B F x = y y B
13 10 12 syl6 x A F x B x A F x = y y B
14 8 9 13 rexlimd x A F x B x A F x = y y B
15 7 14 sylan9 F Fn A x A F x B y ran F y B
16 15 ssrdv F Fn A x A F x B ran F B
17 df-f F : A B F Fn A ran F B
18 5 16 17 sylanbrc F Fn A x A F x B F : A B
19 4 18 impbii F : A B F Fn A x A F x B