Metamath Proof Explorer


Theorem ffnfvf

Description: A function maps to a class to which all values belong. This version of ffnfv uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006)

Ref Expression
Hypotheses ffnfvf.1 _ x A
ffnfvf.2 _ x B
ffnfvf.3 _ x F
Assertion ffnfvf F : A B F Fn A x A F x B

Proof

Step Hyp Ref Expression
1 ffnfvf.1 _ x A
2 ffnfvf.2 _ x B
3 ffnfvf.3 _ x F
4 ffnfv F : A B F Fn A z A F z B
5 nfcv _ z A
6 nfcv _ x z
7 3 6 nffv _ x F z
8 7 2 nfel x F z B
9 nfv z F x B
10 fveq2 z = x F z = F x
11 10 eleq1d z = x F z B F x B
12 5 1 8 9 11 cbvralfw z A F z B x A F x B
13 12 anbi2i F Fn A z A F z B F Fn A x A F x B
14 4 13 bitri F : A B F Fn A x A F x B