Step |
Hyp |
Ref |
Expression |
1 |
|
fthmon.b |
|
2 |
|
fthmon.h |
|
3 |
|
fthmon.f |
|
4 |
|
fthmon.x |
|
5 |
|
fthmon.y |
|
6 |
|
fthmon.r |
|
7 |
|
ffthiso.f |
|
8 |
|
ffthiso.s |
|
9 |
|
ffthiso.t |
|
10 |
|
fthfunc |
|
11 |
10
|
ssbri |
|
12 |
3 11
|
syl |
|
13 |
12
|
adantr |
|
14 |
4
|
adantr |
|
15 |
5
|
adantr |
|
16 |
|
simpr |
|
17 |
1 8 9 13 14 15 16
|
funciso |
|
18 |
|
eqid |
|
19 |
|
df-br |
|
20 |
12 19
|
sylib |
|
21 |
|
funcrcl |
|
22 |
20 21
|
syl |
|
23 |
22
|
simpld |
|
24 |
23
|
ad3antrrr |
|
25 |
4
|
ad3antrrr |
|
26 |
5
|
ad3antrrr |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
22
|
simprd |
|
30 |
1 27 12
|
funcf1 |
|
31 |
30 4
|
ffvelrnd |
|
32 |
30 5
|
ffvelrnd |
|
33 |
27 28 29 31 32 9
|
isoval |
|
34 |
33
|
eleq2d |
|
35 |
34
|
biimpa |
|
36 |
27 28 29 31 32
|
invfun |
|
37 |
36
|
adantr |
|
38 |
|
funfvbrb |
|
39 |
37 38
|
syl |
|
40 |
35 39
|
mpbid |
|
41 |
40
|
ad2antrr |
|
42 |
|
simpr |
|
43 |
41 42
|
breqtrd |
|
44 |
3
|
ad3antrrr |
|
45 |
6
|
ad3antrrr |
|
46 |
|
simplr |
|
47 |
1 2 44 25 26 45 46 18 28
|
fthinv |
|
48 |
43 47
|
mpbird |
|
49 |
1 18 24 25 26 8 48
|
inviso1 |
|
50 |
|
eqid |
|
51 |
7
|
adantr |
|
52 |
5
|
adantr |
|
53 |
4
|
adantr |
|
54 |
27 50 9 29 32 31
|
isohom |
|
55 |
54
|
adantr |
|
56 |
27 28 29 31 32 9
|
invf |
|
57 |
56
|
ffvelrnda |
|
58 |
55 57
|
sseldd |
|
59 |
1 50 2 51 52 53 58
|
fulli |
|
60 |
49 59
|
r19.29a |
|
61 |
17 60
|
impbida |
|