| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fthmon.b |
|
| 2 |
|
fthmon.h |
|
| 3 |
|
fthmon.f |
|
| 4 |
|
fthmon.x |
|
| 5 |
|
fthmon.y |
|
| 6 |
|
fthmon.r |
|
| 7 |
|
ffthiso.f |
|
| 8 |
|
ffthiso.s |
|
| 9 |
|
ffthiso.t |
|
| 10 |
|
fthfunc |
|
| 11 |
10
|
ssbri |
|
| 12 |
3 11
|
syl |
|
| 13 |
12
|
adantr |
|
| 14 |
4
|
adantr |
|
| 15 |
5
|
adantr |
|
| 16 |
|
simpr |
|
| 17 |
1 8 9 13 14 15 16
|
funciso |
|
| 18 |
|
eqid |
|
| 19 |
|
df-br |
|
| 20 |
12 19
|
sylib |
|
| 21 |
|
funcrcl |
|
| 22 |
20 21
|
syl |
|
| 23 |
22
|
simpld |
|
| 24 |
23
|
ad3antrrr |
|
| 25 |
4
|
ad3antrrr |
|
| 26 |
5
|
ad3antrrr |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
22
|
simprd |
|
| 30 |
1 27 12
|
funcf1 |
|
| 31 |
30 4
|
ffvelcdmd |
|
| 32 |
30 5
|
ffvelcdmd |
|
| 33 |
27 28 29 31 32 9
|
isoval |
|
| 34 |
33
|
eleq2d |
|
| 35 |
34
|
biimpa |
|
| 36 |
27 28 29 31 32
|
invfun |
|
| 37 |
36
|
adantr |
|
| 38 |
|
funfvbrb |
|
| 39 |
37 38
|
syl |
|
| 40 |
35 39
|
mpbid |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
|
simpr |
|
| 43 |
41 42
|
breqtrd |
|
| 44 |
3
|
ad3antrrr |
|
| 45 |
6
|
ad3antrrr |
|
| 46 |
|
simplr |
|
| 47 |
1 2 44 25 26 45 46 18 28
|
fthinv |
|
| 48 |
43 47
|
mpbird |
|
| 49 |
1 18 24 25 26 8 48
|
inviso1 |
|
| 50 |
|
eqid |
|
| 51 |
7
|
adantr |
|
| 52 |
5
|
adantr |
|
| 53 |
4
|
adantr |
|
| 54 |
27 50 9 29 32 31
|
isohom |
|
| 55 |
54
|
adantr |
|
| 56 |
27 28 29 31 32 9
|
invf |
|
| 57 |
56
|
ffvelcdmda |
|
| 58 |
55 57
|
sseldd |
|
| 59 |
1 50 2 51 52 53 58
|
fulli |
|
| 60 |
49 59
|
r19.29a |
|
| 61 |
17 60
|
impbida |
|