Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
ffun
Next ⟩
ffund
Metamath Proof Explorer
Ascii
Unicode
Theorem
ffun
Description:
A mapping is a function.
(Contributed by
NM
, 3-Aug-1994)
Ref
Expression
Assertion
ffun
⊢
F
:
A
⟶
B
→
Fun
⁡
F
Proof
Step
Hyp
Ref
Expression
1
ffn
⊢
F
:
A
⟶
B
→
F
Fn
A
2
fnfun
⊢
F
Fn
A
→
Fun
⁡
F
3
1
2
syl
⊢
F
:
A
⟶
B
→
Fun
⁡
F