Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
ffvelrn
Next ⟩
ffvelrni
Metamath Proof Explorer
Ascii
Unicode
Theorem
ffvelrn
Description:
A function's value belongs to its codomain.
(Contributed by
NM
, 12-Aug-1999)
Ref
Expression
Assertion
ffvelrn
⊢
F
:
A
⟶
B
∧
C
∈
A
→
F
⁡
C
∈
B
Proof
Step
Hyp
Ref
Expression
1
ffn
⊢
F
:
A
⟶
B
→
F
Fn
A
2
fnfvelrn
⊢
F
Fn
A
∧
C
∈
A
→
F
⁡
C
∈
ran
⁡
F
3
1
2
sylan
⊢
F
:
A
⟶
B
∧
C
∈
A
→
F
⁡
C
∈
ran
⁡
F
4
frn
⊢
F
:
A
⟶
B
→
ran
⁡
F
⊆
B
5
4
sseld
⊢
F
:
A
⟶
B
→
F
⁡
C
∈
ran
⁡
F
→
F
⁡
C
∈
B
6
5
adantr
⊢
F
:
A
⟶
B
∧
C
∈
A
→
F
⁡
C
∈
ran
⁡
F
→
F
⁡
C
∈
B
7
3
6
mpd
⊢
F
:
A
⟶
B
∧
C
∈
A
→
F
⁡
C
∈
B