Metamath Proof Explorer


Theorem ffz0iswrd

Description: A sequence with zero-based indices is a word. (Contributed by AV, 31-Jan-2018) (Proof shortened by AV, 13-Oct-2018) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion ffz0iswrd W : 0 L S W Word S

Proof

Step Hyp Ref Expression
1 fzval3 L 0 L = 0 ..^ L + 1
2 1 feq2d L W : 0 L S W : 0 ..^ L + 1 S
3 iswrdi W : 0 ..^ L + 1 S W Word S
4 2 3 syl6bi L W : 0 L S W Word S
5 fzn0 0 L L 0
6 elnn0uz L 0 L 0
7 5 6 sylbb2 0 L L 0
8 7 nn0zd 0 L L
9 8 necon1bi ¬ L 0 L =
10 9 feq2d ¬ L W : 0 L S W : S
11 iswrddm0 W : S W Word S
12 10 11 syl6bi ¬ L W : 0 L S W Word S
13 4 12 pm2.61i W : 0 L S W Word S