Metamath Proof Explorer


Theorem ffzo0hash

Description: The size of a function on a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 25-Mar-2018)

Ref Expression
Assertion ffzo0hash N 0 F Fn 0 ..^ N F = N

Proof

Step Hyp Ref Expression
1 hashfn F Fn 0 ..^ N F = 0 ..^ N
2 hashfzo0 N 0 0 ..^ N = N
3 1 2 sylan9eqr N 0 F Fn 0 ..^ N F = N