Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
|
fgcl |
|
3 |
|
filfbas |
|
4 |
1 2 3
|
3syl |
|
5 |
|
fbsspw |
|
6 |
4 5
|
syl |
|
7 |
|
simplr |
|
8 |
7
|
sspwd |
|
9 |
6 8
|
sstrd |
|
10 |
|
simpr |
|
11 |
|
fbasweak |
|
12 |
4 9 10 11
|
syl3anc |
|
13 |
|
elfg |
|
14 |
12 13
|
syl |
|
15 |
1
|
adantr |
|
16 |
|
elfg |
|
17 |
15 16
|
syl |
|
18 |
|
fbsspw |
|
19 |
1 18
|
syl |
|
20 |
19 8
|
sstrd |
|
21 |
|
fbasweak |
|
22 |
1 20 10 21
|
syl3anc |
|
23 |
|
fgcl |
|
24 |
22 23
|
syl |
|
25 |
24
|
ad2antrr |
|
26 |
|
ssfg |
|
27 |
22 26
|
syl |
|
28 |
27
|
adantr |
|
29 |
28
|
sselda |
|
30 |
29
|
adantrr |
|
31 |
30
|
adantrr |
|
32 |
|
simplrl |
|
33 |
|
simprlr |
|
34 |
|
simprr |
|
35 |
33 34
|
sstrd |
|
36 |
|
filss |
|
37 |
25 31 32 35 36
|
syl13anc |
|
38 |
37
|
expr |
|
39 |
38
|
rexlimdvaa |
|
40 |
39
|
anassrs |
|
41 |
40
|
expimpd |
|
42 |
17 41
|
sylbid |
|
43 |
42
|
rexlimdv |
|
44 |
43
|
expimpd |
|
45 |
14 44
|
sylbid |
|
46 |
45
|
ssrdv |
|
47 |
|
ssfg |
|
48 |
47
|
ad2antrr |
|
49 |
|
fgss |
|
50 |
22 12 48 49
|
syl3anc |
|
51 |
46 50
|
eqssd |
|
52 |
51
|
ex |
|
53 |
|
df-fg |
|
54 |
53
|
reldmmpo |
|
55 |
54
|
ovprc1 |
|
56 |
54
|
ovprc1 |
|
57 |
55 56
|
eqtr4d |
|
58 |
52 57
|
pm2.61d1 |
|