Step |
Hyp |
Ref |
Expression |
1 |
|
elfg |
|
2 |
|
elfvex |
|
3 |
|
fbasne0 |
|
4 |
|
n0 |
|
5 |
3 4
|
sylib |
|
6 |
|
fbelss |
|
7 |
6
|
ex |
|
8 |
7
|
ancld |
|
9 |
8
|
eximdv |
|
10 |
5 9
|
mpd |
|
11 |
|
df-rex |
|
12 |
10 11
|
sylibr |
|
13 |
|
elfvdm |
|
14 |
|
sseq2 |
|
15 |
14
|
rexbidv |
|
16 |
15
|
sbcieg |
|
17 |
13 16
|
syl |
|
18 |
12 17
|
mpbird |
|
19 |
|
0nelfb |
|
20 |
|
0ex |
|
21 |
|
sseq2 |
|
22 |
21
|
rexbidv |
|
23 |
20 22
|
sbcie |
|
24 |
|
ss0 |
|
25 |
24
|
eleq1d |
|
26 |
25
|
biimpac |
|
27 |
26
|
rexlimiva |
|
28 |
23 27
|
sylbi |
|
29 |
19 28
|
nsyl |
|
30 |
|
sstr |
|
31 |
30
|
expcom |
|
32 |
31
|
reximdv |
|
33 |
32
|
3ad2ant3 |
|
34 |
|
vex |
|
35 |
|
sseq2 |
|
36 |
35
|
rexbidv |
|
37 |
34 36
|
sbcie |
|
38 |
|
vex |
|
39 |
|
sseq2 |
|
40 |
39
|
rexbidv |
|
41 |
38 40
|
sbcie |
|
42 |
33 37 41
|
3imtr4g |
|
43 |
|
fbasssin |
|
44 |
43
|
3expib |
|
45 |
|
sstr2 |
|
46 |
45
|
com12 |
|
47 |
46
|
reximdv |
|
48 |
|
ss2in |
|
49 |
47 48
|
syl11 |
|
50 |
44 49
|
syl6 |
|
51 |
50
|
exp5c |
|
52 |
51
|
imp31 |
|
53 |
52
|
impancom |
|
54 |
53
|
rexlimdv |
|
55 |
54
|
rexlimdva2 |
|
56 |
55
|
impd |
|
57 |
56
|
3ad2ant1 |
|
58 |
|
sseq1 |
|
59 |
58
|
cbvrexvw |
|
60 |
41 59
|
bitri |
|
61 |
|
sseq1 |
|
62 |
61
|
cbvrexvw |
|
63 |
37 62
|
bitri |
|
64 |
60 63
|
anbi12i |
|
65 |
38
|
inex1 |
|
66 |
|
sseq2 |
|
67 |
66
|
rexbidv |
|
68 |
65 67
|
sbcie |
|
69 |
57 64 68
|
3imtr4g |
|
70 |
1 2 18 29 42 69
|
isfild |
|