Metamath Proof Explorer


Theorem fgfil

Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fgfil F Fil X X filGen F = F

Proof

Step Hyp Ref Expression
1 filfbas F Fil X F fBas X
2 elfg F fBas X t X filGen F t X x F x t
3 1 2 syl F Fil X t X filGen F t X x F x t
4 filss F Fil X x F t X x t t F
5 4 3exp2 F Fil X x F t X x t t F
6 5 com34 F Fil X x F x t t X t F
7 6 rexlimdv F Fil X x F x t t X t F
8 7 impcomd F Fil X t X x F x t t F
9 3 8 sylbid F Fil X t X filGen F t F
10 9 ssrdv F Fil X X filGen F F
11 ssfg F fBas X F X filGen F
12 1 11 syl F Fil X F X filGen F
13 10 12 eqssd F Fil X X filGen F = F