Metamath Proof Explorer


Theorem fgss

Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fgss F fBas X G fBas X F G X filGen F X filGen G

Proof

Step Hyp Ref Expression
1 ssrexv F G x F x t x G x t
2 1 anim2d F G t X x F x t t X x G x t
3 2 3ad2ant3 F fBas X G fBas X F G t X x F x t t X x G x t
4 elfg F fBas X t X filGen F t X x F x t
5 4 3ad2ant1 F fBas X G fBas X F G t X filGen F t X x F x t
6 elfg G fBas X t X filGen G t X x G x t
7 6 3ad2ant2 F fBas X G fBas X F G t X filGen G t X x G x t
8 3 5 7 3imtr4d F fBas X G fBas X F G t X filGen F t X filGen G
9 8 ssrdv F fBas X G fBas X F G X filGen F X filGen G