Metamath Proof Explorer


Theorem fgtr

Description: If A is a member of the filter, then truncating F to A and regenerating the behavior outside A using filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion fgtr F Fil X A F X filGen F 𝑡 A = F

Proof

Step Hyp Ref Expression
1 filfbas F Fil X F fBas X
2 fbncp F fBas X A F ¬ X A F
3 1 2 sylan F Fil X A F ¬ X A F
4 filelss F Fil X A F A X
5 trfil3 F Fil X A X F 𝑡 A Fil A ¬ X A F
6 4 5 syldan F Fil X A F F 𝑡 A Fil A ¬ X A F
7 3 6 mpbird F Fil X A F F 𝑡 A Fil A
8 filfbas F 𝑡 A Fil A F 𝑡 A fBas A
9 7 8 syl F Fil X A F F 𝑡 A fBas A
10 restsspw F 𝑡 A 𝒫 A
11 4 sspwd F Fil X A F 𝒫 A 𝒫 X
12 10 11 sstrid F Fil X A F F 𝑡 A 𝒫 X
13 filtop F Fil X X F
14 13 adantr F Fil X A F X F
15 fbasweak F 𝑡 A fBas A F 𝑡 A 𝒫 X X F F 𝑡 A fBas X
16 9 12 14 15 syl3anc F Fil X A F F 𝑡 A fBas X
17 1 adantr F Fil X A F F fBas X
18 trfilss F Fil X A F F 𝑡 A F
19 fgss F 𝑡 A fBas X F fBas X F 𝑡 A F X filGen F 𝑡 A X filGen F
20 16 17 18 19 syl3anc F Fil X A F X filGen F 𝑡 A X filGen F
21 fgfil F Fil X X filGen F = F
22 21 adantr F Fil X A F X filGen F = F
23 20 22 sseqtrd F Fil X A F X filGen F 𝑡 A F
24 filelss F Fil X x F x X
25 24 ex F Fil X x F x X
26 25 adantr F Fil X A F x F x X
27 elrestr F Fil X A F x F x A F 𝑡 A
28 27 3expa F Fil X A F x F x A F 𝑡 A
29 inss1 x A x
30 sseq1 y = x A y x x A x
31 30 rspcev x A F 𝑡 A x A x y F 𝑡 A y x
32 28 29 31 sylancl F Fil X A F x F y F 𝑡 A y x
33 32 ex F Fil X A F x F y F 𝑡 A y x
34 26 33 jcad F Fil X A F x F x X y F 𝑡 A y x
35 elfg F 𝑡 A fBas X x X filGen F 𝑡 A x X y F 𝑡 A y x
36 16 35 syl F Fil X A F x X filGen F 𝑡 A x X y F 𝑡 A y x
37 34 36 sylibrd F Fil X A F x F x X filGen F 𝑡 A
38 37 ssrdv F Fil X A F F X filGen F 𝑡 A
39 23 38 eqssd F Fil X A F X filGen F 𝑡 A = F