Metamath Proof Explorer


Theorem fgval

Description: The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion fgval FfBasXXfilGenF=x𝒫X|F𝒫x

Proof

Step Hyp Ref Expression
1 df-fg filGen=vV,ffBasvx𝒫v|f𝒫x
2 1 a1i FfBasXfilGen=vV,ffBasvx𝒫v|f𝒫x
3 pweq v=X𝒫v=𝒫X
4 3 adantr v=Xf=F𝒫v=𝒫X
5 ineq1 f=Ff𝒫x=F𝒫x
6 5 neeq1d f=Ff𝒫xF𝒫x
7 6 adantl v=Xf=Ff𝒫xF𝒫x
8 4 7 rabeqbidv v=Xf=Fx𝒫v|f𝒫x=x𝒫X|F𝒫x
9 8 adantl FfBasXv=Xf=Fx𝒫v|f𝒫x=x𝒫X|F𝒫x
10 fveq2 v=XfBasv=fBasX
11 10 adantl FfBasXv=XfBasv=fBasX
12 elfvex FfBasXXV
13 id FfBasXFfBasX
14 elfvdm FfBasXXdomfBas
15 pwexg XdomfBas𝒫XV
16 rabexg 𝒫XVx𝒫X|F𝒫xV
17 14 15 16 3syl FfBasXx𝒫X|F𝒫xV
18 2 9 11 12 13 17 ovmpodx FfBasXXfilGenF=x𝒫X|F𝒫x