Step |
Hyp |
Ref |
Expression |
1 |
|
chincl |
|
2 |
|
chincl |
|
3 |
|
chjcl |
|
4 |
1 2 3
|
syl2an |
|
5 |
4
|
anandis |
|
6 |
|
chjcl |
|
7 |
|
chincl |
|
8 |
6 7
|
sylan2 |
|
9 |
|
chsh |
|
10 |
8 9
|
syl |
|
11 |
5 10
|
jca |
|
12 |
11
|
3impb |
|
13 |
12
|
adantr |
|
14 |
|
ledi |
|
15 |
14
|
adantr |
|
16 |
|
chdmj1 |
|
17 |
1 2 16
|
syl2an |
|
18 |
|
chdmm1 |
|
19 |
18
|
adantr |
|
20 |
19
|
ineq1d |
|
21 |
17 20
|
eqtrd |
|
22 |
21
|
3impdi |
|
23 |
22
|
ineq2d |
|
24 |
23
|
adantr |
|
25 |
|
in4 |
|
26 |
|
cmcm2 |
|
27 |
|
cmcm |
|
28 |
|
choccl |
|
29 |
|
cmbr3 |
|
30 |
28 29
|
sylan2 |
|
31 |
26 27 30
|
3bitr3d |
|
32 |
31
|
biimpa |
|
33 |
|
incom |
|
34 |
32 33
|
eqtrdi |
|
35 |
34
|
3adantl3 |
|
36 |
35
|
adantrr |
|
37 |
36
|
ineq1d |
|
38 |
25 37
|
syl5eq |
|
39 |
24 38
|
eqtrd |
|
40 |
|
in4 |
|
41 |
39 40
|
eqtrdi |
|
42 |
|
ococ |
|
43 |
42
|
oveq1d |
|
44 |
43
|
ineq2d |
|
45 |
44
|
3ad2ant2 |
|
46 |
45
|
adantr |
|
47 |
|
cmcm3 |
|
48 |
|
cmbr3 |
|
49 |
28 48
|
sylan |
|
50 |
47 49
|
bitrd |
|
51 |
50
|
biimpa |
|
52 |
51
|
3adantl1 |
|
53 |
52
|
adantrl |
|
54 |
46 53
|
eqtr3d |
|
55 |
54
|
ineq1d |
|
56 |
|
inass |
|
57 |
|
in12 |
|
58 |
|
inass |
|
59 |
57 58
|
eqtr4i |
|
60 |
|
chocin |
|
61 |
2 60
|
syl |
|
62 |
59 61
|
syl5eq |
|
63 |
62
|
ineq2d |
|
64 |
56 63
|
syl5eq |
|
65 |
64
|
3adant2 |
|
66 |
|
chm0 |
|
67 |
28 66
|
syl |
|
68 |
67
|
3ad2ant2 |
|
69 |
65 68
|
eqtrd |
|
70 |
69
|
adantr |
|
71 |
55 70
|
eqtrd |
|
72 |
41 71
|
eqtrd |
|
73 |
|
pjoml |
|
74 |
13 15 72 73
|
syl12anc |
|
75 |
74
|
eqcomd |
|