Metamath Proof Explorer


Theorem fh2

Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Second of two parts. Theorem 5 of Kalmbach p. 25. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion fh2 A C B C C C B 𝐶 A B 𝐶 C A B C = A B A C

Proof

Step Hyp Ref Expression
1 chincl A C B C A B C
2 chincl A C C C A C C
3 chjcl A B C A C C A B A C C
4 1 2 3 syl2an A C B C A C C C A B A C C
5 4 anandis A C B C C C A B A C C
6 chjcl B C C C B C C
7 chincl A C B C C A B C C
8 6 7 sylan2 A C B C C C A B C C
9 chsh A B C C A B C S
10 8 9 syl A C B C C C A B C S
11 5 10 jca A C B C C C A B A C C A B C S
12 11 3impb A C B C C C A B A C C A B C S
13 12 adantr A C B C C C B 𝐶 A B 𝐶 C A B A C C A B C S
14 ledi A C B C C C A B A C A B C
15 14 adantr A C B C C C B 𝐶 A B 𝐶 C A B A C A B C
16 chdmj1 A B C A C C A B A C = A B A C
17 1 2 16 syl2an A C B C A C C C A B A C = A B A C
18 chdmm1 A C B C A B = A B
19 18 adantr A C B C A C C C A B = A B
20 19 ineq1d A C B C A C C C A B A C = A B A C
21 17 20 eqtrd A C B C A C C C A B A C = A B A C
22 21 3impdi A C B C C C A B A C = A B A C
23 22 ineq2d A C B C C C A B C A B A C = A B C A B A C
24 23 adantr A C B C C C B 𝐶 A B 𝐶 C A B C A B A C = A B C A B A C
25 in4 A B C A B A C = A A B B C A C
26 cmcm2 A C B C A 𝐶 B A 𝐶 B
27 cmcm A C B C A 𝐶 B B 𝐶 A
28 choccl B C B C
29 cmbr3 A C B C A 𝐶 B A A B = A B
30 28 29 sylan2 A C B C A 𝐶 B A A B = A B
31 26 27 30 3bitr3d A C B C B 𝐶 A A A B = A B
32 31 biimpa A C B C B 𝐶 A A A B = A B
33 incom A B = B A
34 32 33 eqtrdi A C B C B 𝐶 A A A B = B A
35 34 3adantl3 A C B C C C B 𝐶 A A A B = B A
36 35 adantrr A C B C C C B 𝐶 A B 𝐶 C A A B = B A
37 36 ineq1d A C B C C C B 𝐶 A B 𝐶 C A A B B C A C = B A B C A C
38 25 37 syl5eq A C B C C C B 𝐶 A B 𝐶 C A B C A B A C = B A B C A C
39 24 38 eqtrd A C B C C C B 𝐶 A B 𝐶 C A B C A B A C = B A B C A C
40 in4 B A B C A C = B B C A A C
41 39 40 eqtrdi A C B C C C B 𝐶 A B 𝐶 C A B C A B A C = B B C A A C
42 ococ B C B = B
43 42 oveq1d B C B C = B C
44 43 ineq2d B C B B C = B B C
45 44 3ad2ant2 A C B C C C B B C = B B C
46 45 adantr A C B C C C B 𝐶 A B 𝐶 C B B C = B B C
47 cmcm3 B C C C B 𝐶 C B 𝐶 C
48 cmbr3 B C C C B 𝐶 C B B C = B C
49 28 48 sylan B C C C B 𝐶 C B B C = B C
50 47 49 bitrd B C C C B 𝐶 C B B C = B C
51 50 biimpa B C C C B 𝐶 C B B C = B C
52 51 3adantl1 A C B C C C B 𝐶 C B B C = B C
53 52 adantrl A C B C C C B 𝐶 A B 𝐶 C B B C = B C
54 46 53 eqtr3d A C B C C C B 𝐶 A B 𝐶 C B B C = B C
55 54 ineq1d A C B C C C B 𝐶 A B 𝐶 C B B C A A C = B C A A C
56 inass B C A A C = B C A A C
57 in12 C A A C = A C A C
58 inass A C A C = A C A C
59 57 58 eqtr4i C A A C = A C A C
60 chocin A C C A C A C = 0
61 2 60 syl A C C C A C A C = 0
62 59 61 syl5eq A C C C C A A C = 0
63 62 ineq2d A C C C B C A A C = B 0
64 56 63 syl5eq A C C C B C A A C = B 0
65 64 3adant2 A C B C C C B C A A C = B 0
66 chm0 B C B 0 = 0
67 28 66 syl B C B 0 = 0
68 67 3ad2ant2 A C B C C C B 0 = 0
69 65 68 eqtrd A C B C C C B C A A C = 0
70 69 adantr A C B C C C B 𝐶 A B 𝐶 C B C A A C = 0
71 55 70 eqtrd A C B C C C B 𝐶 A B 𝐶 C B B C A A C = 0
72 41 71 eqtrd A C B C C C B 𝐶 A B 𝐶 C A B C A B A C = 0
73 pjoml A B A C C A B C S A B A C A B C A B C A B A C = 0 A B A C = A B C
74 13 15 72 73 syl12anc A C B C C C B 𝐶 A B 𝐶 C A B A C = A B C
75 74 eqcomd A C B C C C B 𝐶 A B 𝐶 C A B C = A B A C