Metamath Proof Explorer


Theorem fh3i

Description: Variation of the Foulis-Holland Theorem. (Contributed by NM, 16-Jan-2005) (New usage is discouraged.)

Ref Expression
Hypotheses fh1.1 A C
fh1.2 B C
fh1.3 C C
fh1.4 A 𝐶 B
fh1.5 A 𝐶 C
Assertion fh3i A B C = A B A C

Proof

Step Hyp Ref Expression
1 fh1.1 A C
2 fh1.2 B C
3 fh1.3 C C
4 fh1.4 A 𝐶 B
5 fh1.5 A 𝐶 C
6 1 choccli A C
7 2 choccli B C
8 3 choccli C C
9 1 2 4 cmcm3ii A 𝐶 B
10 6 2 9 cmcm2ii A 𝐶 B
11 1 3 5 cmcm3ii A 𝐶 C
12 6 3 11 cmcm2ii A 𝐶 C
13 6 7 8 10 12 fh1i A B C = A B A C
14 2 3 chdmm1i B C = B C
15 14 ineq2i A B C = A B C
16 1 2 chdmj1i A B = A B
17 1 3 chdmj1i A C = A C
18 16 17 oveq12i A B A C = A B A C
19 13 15 18 3eqtr4ri A B A C = A B C
20 1 2 chjcli A B C
21 1 3 chjcli A C C
22 20 21 chdmm1i A B A C = A B A C
23 2 3 chincli B C C
24 1 23 chdmj1i A B C = A B C
25 19 22 24 3eqtr4i A B A C = A B C
26 1 23 chjcli A B C C
27 20 21 chincli A B A C C
28 26 27 chcon3i A B C = A B A C A B A C = A B C
29 25 28 mpbir A B C = A B A C