Step |
Hyp |
Ref |
Expression |
1 |
|
fi1uzind.f |
|
2 |
|
fi1uzind.l |
|
3 |
|
fi1uzind.1 |
|
4 |
|
fi1uzind.2 |
|
5 |
|
fi1uzind.3 |
|
6 |
|
fi1uzind.4 |
|
7 |
|
fi1uzind.base |
|
8 |
|
fi1uzind.step |
|
9 |
|
dfclel |
|
10 |
|
nn0z |
|
11 |
2 10
|
mp1i |
|
12 |
|
nn0z |
|
13 |
12
|
ad2antlr |
|
14 |
|
breq2 |
|
15 |
14
|
eqcoms |
|
16 |
15
|
biimpcd |
|
17 |
16
|
adantr |
|
18 |
17
|
imp |
|
19 |
|
eqeq1 |
|
20 |
19
|
anbi2d |
|
21 |
20
|
imbi1d |
|
22 |
21
|
2albidv |
|
23 |
|
eqeq1 |
|
24 |
23
|
anbi2d |
|
25 |
24
|
imbi1d |
|
26 |
25
|
2albidv |
|
27 |
|
eqeq1 |
|
28 |
27
|
anbi2d |
|
29 |
28
|
imbi1d |
|
30 |
29
|
2albidv |
|
31 |
|
eqeq1 |
|
32 |
31
|
anbi2d |
|
33 |
32
|
imbi1d |
|
34 |
33
|
2albidv |
|
35 |
|
eqcom |
|
36 |
35 7
|
sylan2b |
|
37 |
36
|
gen2 |
|
38 |
37
|
a1i |
|
39 |
|
simpl |
|
40 |
|
simpr |
|
41 |
40
|
sbceq1d |
|
42 |
39 41
|
sbceqbid |
|
43 |
|
fveq2 |
|
44 |
43
|
eqeq2d |
|
45 |
44
|
adantr |
|
46 |
42 45
|
anbi12d |
|
47 |
46 4
|
imbi12d |
|
48 |
47
|
cbval2vw |
|
49 |
|
nn0ge0 |
|
50 |
|
0red |
|
51 |
|
nn0re |
|
52 |
2 51
|
mp1i |
|
53 |
|
zre |
|
54 |
|
letr |
|
55 |
50 52 53 54
|
syl3anc |
|
56 |
|
0nn0 |
|
57 |
|
pm3.22 |
|
58 |
|
0z |
|
59 |
|
eluz1 |
|
60 |
58 59
|
mp1i |
|
61 |
57 60
|
mpbird |
|
62 |
|
eluznn0 |
|
63 |
56 61 62
|
sylancr |
|
64 |
63
|
ex |
|
65 |
55 64
|
syl6com |
|
66 |
65
|
ex |
|
67 |
66
|
com14 |
|
68 |
67
|
pm2.43a |
|
69 |
68
|
imp |
|
70 |
69
|
com12 |
|
71 |
2 49 70
|
mp2b |
|
72 |
71
|
3adant1 |
|
73 |
|
eqcom |
|
74 |
|
nn0p1gt0 |
|
75 |
74
|
adantr |
|
76 |
|
simpr |
|
77 |
75 76
|
breqtrrd |
|
78 |
73 77
|
sylan2b |
|
79 |
78
|
adantrl |
|
80 |
|
hashgt0elex |
|
81 |
|
vex |
|
82 |
81
|
a1i |
|
83 |
|
simpr |
|
84 |
|
simpl |
|
85 |
|
hashdifsnp1 |
|
86 |
73 85
|
syl5bi |
|
87 |
82 83 84 86
|
syl3anc |
|
88 |
87
|
imp |
|
89 |
|
peano2nn0 |
|
90 |
89
|
ad2antrr |
|
91 |
90
|
ad2antlr |
|
92 |
|
simpr |
|
93 |
|
simplrr |
|
94 |
|
simprlr |
|
95 |
94
|
adantr |
|
96 |
92 93 95
|
3jca |
|
97 |
91 96
|
jca |
|
98 |
81
|
difexi |
|
99 |
|
simpl |
|
100 |
|
simpr |
|
101 |
100
|
sbceq1d |
|
102 |
99 101
|
sbceqbid |
|
103 |
|
eqcom |
|
104 |
|
fveqeq2 |
|
105 |
103 104
|
syl5bb |
|
106 |
105
|
adantr |
|
107 |
102 106
|
anbi12d |
|
108 |
107 6
|
imbi12d |
|
109 |
108
|
spc2gv |
|
110 |
98 1 109
|
mp2an |
|
111 |
110
|
expdimp |
|
112 |
111
|
ad2antrr |
|
113 |
73
|
3anbi2i |
|
114 |
113
|
anbi2i |
|
115 |
114 8
|
sylanb |
|
116 |
97 112 115
|
syl6an |
|
117 |
116
|
exp41 |
|
118 |
117
|
com15 |
|
119 |
118
|
com23 |
|
120 |
88 119
|
mpcom |
|
121 |
120
|
ex |
|
122 |
121
|
com23 |
|
123 |
122
|
ex |
|
124 |
123
|
com15 |
|
125 |
124
|
imp |
|
126 |
5 125
|
mpd |
|
127 |
126
|
ex |
|
128 |
127
|
com4l |
|
129 |
128
|
exlimiv |
|
130 |
80 129
|
syl |
|
131 |
130
|
ex |
|
132 |
131
|
com25 |
|
133 |
132
|
elv |
|
134 |
133
|
imp |
|
135 |
134
|
impcom |
|
136 |
79 135
|
mpd |
|
137 |
72 136
|
sylan |
|
138 |
137
|
impancom |
|
139 |
138
|
alrimivv |
|
140 |
139
|
ex |
|
141 |
48 140
|
syl5bi |
|
142 |
22 26 30 34 38 141
|
uzind |
|
143 |
11 13 18 142
|
syl3anc |
|
144 |
|
sbcex |
|
145 |
|
sbccom |
|
146 |
|
sbcex |
|
147 |
145 146
|
sylbi |
|
148 |
144 147
|
jca |
|
149 |
|
simpl |
|
150 |
|
simpr |
|
151 |
150
|
sbceq1d |
|
152 |
149 151
|
sbceqbid |
|
153 |
|
fveq2 |
|
154 |
153
|
eqeq2d |
|
155 |
154
|
adantr |
|
156 |
152 155
|
anbi12d |
|
157 |
156 3
|
imbi12d |
|
158 |
157
|
spc2gv |
|
159 |
158
|
com23 |
|
160 |
159
|
expd |
|
161 |
148 160
|
mpcom |
|
162 |
161
|
imp |
|
163 |
143 162
|
syl5com |
|
164 |
163
|
exp31 |
|
165 |
164
|
com14 |
|
166 |
165
|
expcom |
|
167 |
166
|
com24 |
|
168 |
167
|
pm2.43i |
|
169 |
168
|
imp |
|
170 |
169
|
exlimiv |
|
171 |
9 170
|
sylbi |
|
172 |
|
hashcl |
|
173 |
171 172
|
syl11 |
|
174 |
173
|
3imp |
|