Metamath Proof Explorer


Theorem fi1uzind

Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, usually with L = 0 (see opfi1ind ) or L = 1 . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)

Ref Expression
Hypotheses fi1uzind.f F V
fi1uzind.l L 0
fi1uzind.1 v = V e = E ψ φ
fi1uzind.2 v = w e = f ψ θ
fi1uzind.3 [˙v / a]˙ [˙e / b]˙ ρ n v [˙ v n / a]˙ [˙F / b]˙ ρ
fi1uzind.4 w = v n f = F θ χ
fi1uzind.base [˙v / a]˙ [˙e / b]˙ ρ v = L ψ
fi1uzind.step y + 1 0 [˙v / a]˙ [˙e / b]˙ ρ v = y + 1 n v χ ψ
Assertion fi1uzind [˙V / a]˙ [˙E / b]˙ ρ V Fin L V φ

Proof

Step Hyp Ref Expression
1 fi1uzind.f F V
2 fi1uzind.l L 0
3 fi1uzind.1 v = V e = E ψ φ
4 fi1uzind.2 v = w e = f ψ θ
5 fi1uzind.3 [˙v / a]˙ [˙e / b]˙ ρ n v [˙ v n / a]˙ [˙F / b]˙ ρ
6 fi1uzind.4 w = v n f = F θ χ
7 fi1uzind.base [˙v / a]˙ [˙e / b]˙ ρ v = L ψ
8 fi1uzind.step y + 1 0 [˙v / a]˙ [˙e / b]˙ ρ v = y + 1 n v χ ψ
9 dfclel V 0 n n = V n 0
10 nn0z L 0 L
11 2 10 mp1i L V n 0 n = V L
12 nn0z n 0 n
13 12 ad2antlr L V n 0 n = V n
14 breq2 V = n L V L n
15 14 eqcoms n = V L V L n
16 15 biimpcd L V n = V L n
17 16 adantr L V n 0 n = V L n
18 17 imp L V n 0 n = V L n
19 eqeq1 x = L x = v L = v
20 19 anbi2d x = L [˙v / a]˙ [˙e / b]˙ ρ x = v [˙v / a]˙ [˙e / b]˙ ρ L = v
21 20 imbi1d x = L [˙v / a]˙ [˙e / b]˙ ρ x = v ψ [˙v / a]˙ [˙e / b]˙ ρ L = v ψ
22 21 2albidv x = L v e [˙v / a]˙ [˙e / b]˙ ρ x = v ψ v e [˙v / a]˙ [˙e / b]˙ ρ L = v ψ
23 eqeq1 x = y x = v y = v
24 23 anbi2d x = y [˙v / a]˙ [˙e / b]˙ ρ x = v [˙v / a]˙ [˙e / b]˙ ρ y = v
25 24 imbi1d x = y [˙v / a]˙ [˙e / b]˙ ρ x = v ψ [˙v / a]˙ [˙e / b]˙ ρ y = v ψ
26 25 2albidv x = y v e [˙v / a]˙ [˙e / b]˙ ρ x = v ψ v e [˙v / a]˙ [˙e / b]˙ ρ y = v ψ
27 eqeq1 x = y + 1 x = v y + 1 = v
28 27 anbi2d x = y + 1 [˙v / a]˙ [˙e / b]˙ ρ x = v [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v
29 28 imbi1d x = y + 1 [˙v / a]˙ [˙e / b]˙ ρ x = v ψ [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v ψ
30 29 2albidv x = y + 1 v e [˙v / a]˙ [˙e / b]˙ ρ x = v ψ v e [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v ψ
31 eqeq1 x = n x = v n = v
32 31 anbi2d x = n [˙v / a]˙ [˙e / b]˙ ρ x = v [˙v / a]˙ [˙e / b]˙ ρ n = v
33 32 imbi1d x = n [˙v / a]˙ [˙e / b]˙ ρ x = v ψ [˙v / a]˙ [˙e / b]˙ ρ n = v ψ
34 33 2albidv x = n v e [˙v / a]˙ [˙e / b]˙ ρ x = v ψ v e [˙v / a]˙ [˙e / b]˙ ρ n = v ψ
35 eqcom L = v v = L
36 35 7 sylan2b [˙v / a]˙ [˙e / b]˙ ρ L = v ψ
37 36 gen2 v e [˙v / a]˙ [˙e / b]˙ ρ L = v ψ
38 37 a1i L v e [˙v / a]˙ [˙e / b]˙ ρ L = v ψ
39 simpl v = w e = f v = w
40 simpr v = w e = f e = f
41 40 sbceq1d v = w e = f [˙e / b]˙ ρ [˙f / b]˙ ρ
42 39 41 sbceqbid v = w e = f [˙v / a]˙ [˙e / b]˙ ρ [˙w / a]˙ [˙f / b]˙ ρ
43 fveq2 v = w v = w
44 43 eqeq2d v = w y = v y = w
45 44 adantr v = w e = f y = v y = w
46 42 45 anbi12d v = w e = f [˙v / a]˙ [˙e / b]˙ ρ y = v [˙w / a]˙ [˙f / b]˙ ρ y = w
47 46 4 imbi12d v = w e = f [˙v / a]˙ [˙e / b]˙ ρ y = v ψ [˙w / a]˙ [˙f / b]˙ ρ y = w θ
48 47 cbval2vw v e [˙v / a]˙ [˙e / b]˙ ρ y = v ψ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ
49 nn0ge0 L 0 0 L
50 0red y 0
51 nn0re L 0 L
52 2 51 mp1i y L
53 zre y y
54 letr 0 L y 0 L L y 0 y
55 50 52 53 54 syl3anc y 0 L L y 0 y
56 0nn0 0 0
57 pm3.22 0 y y y 0 y
58 0z 0
59 eluz1 0 y 0 y 0 y
60 58 59 mp1i 0 y y y 0 y 0 y
61 57 60 mpbird 0 y y y 0
62 eluznn0 0 0 y 0 y 0
63 56 61 62 sylancr 0 y y y 0
64 63 ex 0 y y y 0
65 55 64 syl6com 0 L L y y y y 0
66 65 ex 0 L L y y y y 0
67 66 com14 y L y y 0 L y 0
68 67 pm2.43a y L y 0 L y 0
69 68 imp y L y 0 L y 0
70 69 com12 0 L y L y y 0
71 2 49 70 mp2b y L y y 0
72 71 3adant1 L y L y y 0
73 eqcom y + 1 = v v = y + 1
74 nn0p1gt0 y 0 0 < y + 1
75 74 adantr y 0 v = y + 1 0 < y + 1
76 simpr y 0 v = y + 1 v = y + 1
77 75 76 breqtrrd y 0 v = y + 1 0 < v
78 73 77 sylan2b y 0 y + 1 = v 0 < v
79 78 adantrl y 0 [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v 0 < v
80 hashgt0elex v V 0 < v n n v
81 vex v V
82 81 a1i y 0 n v v V
83 simpr y 0 n v n v
84 simpl y 0 n v y 0
85 hashdifsnp1 v V n v y 0 v = y + 1 v n = y
86 73 85 syl5bi v V n v y 0 y + 1 = v v n = y
87 82 83 84 86 syl3anc y 0 n v y + 1 = v v n = y
88 87 imp y 0 n v y + 1 = v v n = y
89 peano2nn0 y 0 y + 1 0
90 89 ad2antrr y 0 n v y + 1 = v y + 1 0
91 90 ad2antlr w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ y + 1 0
92 simpr w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ [˙v / a]˙ [˙e / b]˙ ρ
93 simplrr w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v
94 simprlr w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v n v
95 94 adantr w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ n v
96 92 93 95 3jca w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v n v
97 91 96 jca w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ y + 1 0 [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v n v
98 81 difexi v n V
99 simpl w = v n f = F w = v n
100 simpr w = v n f = F f = F
101 100 sbceq1d w = v n f = F [˙f / b]˙ ρ [˙F / b]˙ ρ
102 99 101 sbceqbid w = v n f = F [˙w / a]˙ [˙f / b]˙ ρ [˙ v n / a]˙ [˙F / b]˙ ρ
103 eqcom y = w w = y
104 fveqeq2 w = v n w = y v n = y
105 103 104 syl5bb w = v n y = w v n = y
106 105 adantr w = v n f = F y = w v n = y
107 102 106 anbi12d w = v n f = F [˙w / a]˙ [˙f / b]˙ ρ y = w [˙ v n / a]˙ [˙F / b]˙ ρ v n = y
108 107 6 imbi12d w = v n f = F [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ v n = y χ
109 108 spc2gv v n V F V w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ v n = y χ
110 98 1 109 mp2an w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ v n = y χ
111 110 expdimp w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ v n = y χ
112 111 ad2antrr w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ v n = y χ
113 73 3anbi2i [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v n v [˙v / a]˙ [˙e / b]˙ ρ v = y + 1 n v
114 113 anbi2i y + 1 0 [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v n v y + 1 0 [˙v / a]˙ [˙e / b]˙ ρ v = y + 1 n v
115 114 8 sylanb y + 1 0 [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v n v χ ψ
116 97 112 115 syl6an w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ v n = y ψ
117 116 exp41 w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ v n = y ψ
118 117 com15 v n = y [˙ v n / a]˙ [˙F / b]˙ ρ y 0 n v y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
119 118 com23 v n = y y 0 n v y + 1 = v [˙ v n / a]˙ [˙F / b]˙ ρ [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
120 88 119 mpcom y 0 n v y + 1 = v [˙ v n / a]˙ [˙F / b]˙ ρ [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
121 120 ex y 0 n v y + 1 = v [˙ v n / a]˙ [˙F / b]˙ ρ [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
122 121 com23 y 0 n v [˙ v n / a]˙ [˙F / b]˙ ρ y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
123 122 ex y 0 n v [˙ v n / a]˙ [˙F / b]˙ ρ y + 1 = v [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
124 123 com15 [˙v / a]˙ [˙e / b]˙ ρ n v [˙ v n / a]˙ [˙F / b]˙ ρ y + 1 = v y 0 w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
125 124 imp [˙v / a]˙ [˙e / b]˙ ρ n v [˙ v n / a]˙ [˙F / b]˙ ρ y + 1 = v y 0 w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
126 5 125 mpd [˙v / a]˙ [˙e / b]˙ ρ n v y + 1 = v y 0 w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
127 126 ex [˙v / a]˙ [˙e / b]˙ ρ n v y + 1 = v y 0 w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
128 127 com4l n v y + 1 = v y 0 [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
129 128 exlimiv n n v y + 1 = v y 0 [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
130 80 129 syl v V 0 < v y + 1 = v y 0 [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
131 130 ex v V 0 < v y + 1 = v y 0 [˙v / a]˙ [˙e / b]˙ ρ w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
132 131 com25 v V [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v y 0 0 < v w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
133 132 elv [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v y 0 0 < v w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
134 133 imp [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v y 0 0 < v w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
135 134 impcom y 0 [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v 0 < v w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
136 79 135 mpd y 0 [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
137 72 136 sylan L y L y [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ ψ
138 137 impancom L y L y w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v ψ
139 138 alrimivv L y L y w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ v e [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v ψ
140 139 ex L y L y w f [˙w / a]˙ [˙f / b]˙ ρ y = w θ v e [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v ψ
141 48 140 syl5bi L y L y v e [˙v / a]˙ [˙e / b]˙ ρ y = v ψ v e [˙v / a]˙ [˙e / b]˙ ρ y + 1 = v ψ
142 22 26 30 34 38 141 uzind L n L n v e [˙v / a]˙ [˙e / b]˙ ρ n = v ψ
143 11 13 18 142 syl3anc L V n 0 n = V v e [˙v / a]˙ [˙e / b]˙ ρ n = v ψ
144 sbcex [˙V / a]˙ [˙E / b]˙ ρ V V
145 sbccom [˙V / a]˙ [˙E / b]˙ ρ [˙E / b]˙ [˙V / a]˙ ρ
146 sbcex [˙E / b]˙ [˙V / a]˙ ρ E V
147 145 146 sylbi [˙V / a]˙ [˙E / b]˙ ρ E V
148 144 147 jca [˙V / a]˙ [˙E / b]˙ ρ V V E V
149 simpl v = V e = E v = V
150 simpr v = V e = E e = E
151 150 sbceq1d v = V e = E [˙e / b]˙ ρ [˙E / b]˙ ρ
152 149 151 sbceqbid v = V e = E [˙v / a]˙ [˙e / b]˙ ρ [˙V / a]˙ [˙E / b]˙ ρ
153 fveq2 v = V v = V
154 153 eqeq2d v = V n = v n = V
155 154 adantr v = V e = E n = v n = V
156 152 155 anbi12d v = V e = E [˙v / a]˙ [˙e / b]˙ ρ n = v [˙V / a]˙ [˙E / b]˙ ρ n = V
157 156 3 imbi12d v = V e = E [˙v / a]˙ [˙e / b]˙ ρ n = v ψ [˙V / a]˙ [˙E / b]˙ ρ n = V φ
158 157 spc2gv V V E V v e [˙v / a]˙ [˙e / b]˙ ρ n = v ψ [˙V / a]˙ [˙E / b]˙ ρ n = V φ
159 158 com23 V V E V [˙V / a]˙ [˙E / b]˙ ρ n = V v e [˙v / a]˙ [˙e / b]˙ ρ n = v ψ φ
160 159 expd V V E V [˙V / a]˙ [˙E / b]˙ ρ n = V v e [˙v / a]˙ [˙e / b]˙ ρ n = v ψ φ
161 148 160 mpcom [˙V / a]˙ [˙E / b]˙ ρ n = V v e [˙v / a]˙ [˙e / b]˙ ρ n = v ψ φ
162 161 imp [˙V / a]˙ [˙E / b]˙ ρ n = V v e [˙v / a]˙ [˙e / b]˙ ρ n = v ψ φ
163 143 162 syl5com L V n 0 n = V [˙V / a]˙ [˙E / b]˙ ρ n = V φ
164 163 exp31 L V n 0 n = V [˙V / a]˙ [˙E / b]˙ ρ n = V φ
165 164 com14 [˙V / a]˙ [˙E / b]˙ ρ n = V n 0 n = V L V φ
166 165 expcom n = V [˙V / a]˙ [˙E / b]˙ ρ n 0 n = V L V φ
167 166 com24 n = V n = V n 0 [˙V / a]˙ [˙E / b]˙ ρ L V φ
168 167 pm2.43i n = V n 0 [˙V / a]˙ [˙E / b]˙ ρ L V φ
169 168 imp n = V n 0 [˙V / a]˙ [˙E / b]˙ ρ L V φ
170 169 exlimiv n n = V n 0 [˙V / a]˙ [˙E / b]˙ ρ L V φ
171 9 170 sylbi V 0 [˙V / a]˙ [˙E / b]˙ ρ L V φ
172 hashcl V Fin V 0
173 171 172 syl11 [˙V / a]˙ [˙E / b]˙ ρ V Fin L V φ
174 173 3imp [˙V / a]˙ [˙E / b]˙ ρ V Fin L V φ