Metamath Proof Explorer


Theorem fibas

Description: A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fibas fi A TopBases

Proof

Step Hyp Ref Expression
1 fvex fi A V
2 fiin x fi A y fi A x y fi A
3 2 rgen2 x fi A y fi A x y fi A
4 fiinbas fi A V x fi A y fi A x y fi A fi A TopBases
5 1 3 4 mp2an fi A TopBases