Metamath Proof Explorer


Theorem ficardom

Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 4-Feb-2013)

Ref Expression
Assertion ficardom A Fin card A ω

Proof

Step Hyp Ref Expression
1 isfi A Fin x ω A x
2 1 biimpi A Fin x ω A x
3 finnum A Fin A dom card
4 cardid2 A dom card card A A
5 3 4 syl A Fin card A A
6 entr card A A A x card A x
7 5 6 sylan A Fin A x card A x
8 cardon card A On
9 onomeneq card A On x ω card A x card A = x
10 8 9 mpan x ω card A x card A = x
11 7 10 syl5ib x ω A Fin A x card A = x
12 eleq1a x ω card A = x card A ω
13 11 12 syld x ω A Fin A x card A ω
14 13 expcomd x ω A x A Fin card A ω
15 14 rexlimiv x ω A x A Fin card A ω
16 2 15 mpcom A Fin card A ω