Metamath Proof Explorer


Theorem ficardom

Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 4-Feb-2013)

Ref Expression
Assertion ficardom AFincardAω

Proof

Step Hyp Ref Expression
1 isfi AFinxωAx
2 1 biimpi AFinxωAx
3 finnum AFinAdomcard
4 cardid2 AdomcardcardAA
5 3 4 syl AFincardAA
6 entr cardAAAxcardAx
7 5 6 sylan AFinAxcardAx
8 cardon cardAOn
9 onomeneq cardAOnxωcardAxcardA=x
10 8 9 mpan xωcardAxcardA=x
11 7 10 imbitrid xωAFinAxcardA=x
12 eleq1a xωcardA=xcardAω
13 11 12 syld xωAFinAxcardAω
14 13 expcomd xωAxAFincardAω
15 14 rexlimiv xωAxAFincardAω
16 2 15 mpcom AFincardAω