Metamath Proof Explorer


Theorem ficardun2OLD

Description: Obsolete version of ficardun2 as of 3-Jul-2024. (Contributed by Mario Carneiro, 5-Feb-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ficardun2OLD AFinBFincardABcardA+𝑜cardB

Proof

Step Hyp Ref Expression
1 undjudom AFinBFinABA⊔︀B
2 finnum AFinAdomcard
3 finnum BFinBdomcard
4 cardadju AdomcardBdomcardA⊔︀BcardA+𝑜cardB
5 2 3 4 syl2an AFinBFinA⊔︀BcardA+𝑜cardB
6 domentr ABA⊔︀BA⊔︀BcardA+𝑜cardBABcardA+𝑜cardB
7 1 5 6 syl2anc AFinBFinABcardA+𝑜cardB
8 unfi AFinBFinABFin
9 finnum ABFinABdomcard
10 8 9 syl AFinBFinABdomcard
11 ficardom AFincardAω
12 ficardom BFincardBω
13 nnacl cardAωcardBωcardA+𝑜cardBω
14 11 12 13 syl2an AFinBFincardA+𝑜cardBω
15 nnon cardA+𝑜cardBωcardA+𝑜cardBOn
16 onenon cardA+𝑜cardBOncardA+𝑜cardBdomcard
17 14 15 16 3syl AFinBFincardA+𝑜cardBdomcard
18 carddom2 ABdomcardcardA+𝑜cardBdomcardcardABcardcardA+𝑜cardBABcardA+𝑜cardB
19 10 17 18 syl2anc AFinBFincardABcardcardA+𝑜cardBABcardA+𝑜cardB
20 7 19 mpbird AFinBFincardABcardcardA+𝑜cardB
21 cardnn cardA+𝑜cardBωcardcardA+𝑜cardB=cardA+𝑜cardB
22 14 21 syl AFinBFincardcardA+𝑜cardB=cardA+𝑜cardB
23 20 22 sseqtrd AFinBFincardABcardA+𝑜cardB