Step |
Hyp |
Ref |
Expression |
1 |
|
brdomi |
|
2 |
1
|
adantl |
|
3 |
|
reldom |
|
4 |
3
|
brrelex2i |
|
5 |
|
omelon2 |
|
6 |
5
|
ad2antlr |
|
7 |
|
pwexg |
|
8 |
7
|
ad2antrr |
|
9 |
|
inex1g |
|
10 |
8 9
|
syl |
|
11 |
|
difss |
|
12 |
|
ssdomg |
|
13 |
10 11 12
|
mpisyl |
|
14 |
|
f1f1orn |
|
15 |
14
|
adantl |
|
16 |
|
f1opwfi |
|
17 |
15 16
|
syl |
|
18 |
|
f1oeng |
|
19 |
10 17 18
|
syl2anc |
|
20 |
|
pwexg |
|
21 |
20
|
ad2antlr |
|
22 |
|
inex1g |
|
23 |
21 22
|
syl |
|
24 |
|
f1f |
|
25 |
24
|
frnd |
|
26 |
25
|
adantl |
|
27 |
26
|
sspwd |
|
28 |
27
|
ssrind |
|
29 |
|
ssdomg |
|
30 |
23 28 29
|
sylc |
|
31 |
|
sneq |
|
32 |
|
pweq |
|
33 |
31 32
|
xpeq12d |
|
34 |
33
|
cbviunv |
|
35 |
|
iuneq1 |
|
36 |
34 35
|
eqtrid |
|
37 |
36
|
fveq2d |
|
38 |
37
|
cbvmptv |
|
39 |
38
|
ackbij1 |
|
40 |
|
f1oeng |
|
41 |
23 39 40
|
sylancl |
|
42 |
|
domentr |
|
43 |
30 41 42
|
syl2anc |
|
44 |
|
endomtr |
|
45 |
19 43 44
|
syl2anc |
|
46 |
|
domtr |
|
47 |
13 45 46
|
syl2anc |
|
48 |
|
ondomen |
|
49 |
6 47 48
|
syl2anc |
|
50 |
|
eqid |
|
51 |
50
|
fifo |
|
52 |
51
|
ad2antrr |
|
53 |
|
fodomnum |
|
54 |
49 52 53
|
sylc |
|
55 |
|
domtr |
|
56 |
54 47 55
|
syl2anc |
|
57 |
56
|
ex |
|
58 |
57
|
exlimdv |
|
59 |
4 58
|
sylan2 |
|
60 |
2 59
|
mpd |
|
61 |
60
|
ex |
|
62 |
|
fvex |
|
63 |
|
ssfii |
|
64 |
|
ssdomg |
|
65 |
62 63 64
|
mpsyl |
|
66 |
|
domtr |
|
67 |
66
|
ex |
|
68 |
65 67
|
syl |
|
69 |
61 68
|
impbid |
|