Step |
Hyp |
Ref |
Expression |
1 |
|
fidomndrng.b |
|
2 |
|
domnring |
|
3 |
2
|
adantl |
|
4 |
|
domnnzr |
|
5 |
4
|
adantl |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
6 7
|
nzrnz |
|
9 |
5 8
|
syl |
|
10 |
9
|
neneqd |
|
11 |
|
eqid |
|
12 |
11 7 6
|
0unit |
|
13 |
3 12
|
syl |
|
14 |
10 13
|
mtbird |
|
15 |
|
disjsn |
|
16 |
14 15
|
sylibr |
|
17 |
1 11
|
unitss |
|
18 |
|
reldisj |
|
19 |
17 18
|
ax-mp |
|
20 |
16 19
|
sylib |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
simplr |
|
24 |
|
simpll |
|
25 |
|
simpr |
|
26 |
|
eqid |
|
27 |
1 7 6 21 22 23 24 25 26
|
fidomndrnglem |
|
28 |
|
eqid |
|
29 |
28 1
|
opprbas |
|
30 |
28 7
|
oppr0 |
|
31 |
28 6
|
oppr1 |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
28
|
opprdomn |
|
35 |
23 34
|
syl |
|
36 |
|
eqid |
|
37 |
29 30 31 32 33 35 24 25 36
|
fidomndrnglem |
|
38 |
11 6 21 28 32
|
isunit |
|
39 |
27 37 38
|
sylanbrc |
|
40 |
20 39
|
eqelssd |
|
41 |
1 11 7
|
isdrng |
|
42 |
3 40 41
|
sylanbrc |
|
43 |
42
|
ex |
|
44 |
|
drngdomn |
|
45 |
43 44
|
impbid1 |
|