| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fidomndrng.b |
|
| 2 |
|
domnring |
|
| 3 |
2
|
adantl |
|
| 4 |
|
domnnzr |
|
| 5 |
4
|
adantl |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
6 7
|
nzrnz |
|
| 9 |
5 8
|
syl |
|
| 10 |
9
|
neneqd |
|
| 11 |
|
eqid |
|
| 12 |
11 7 6
|
0unit |
|
| 13 |
3 12
|
syl |
|
| 14 |
10 13
|
mtbird |
|
| 15 |
|
disjsn |
|
| 16 |
14 15
|
sylibr |
|
| 17 |
1 11
|
unitss |
|
| 18 |
|
reldisj |
|
| 19 |
17 18
|
ax-mp |
|
| 20 |
16 19
|
sylib |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
|
simplr |
|
| 24 |
|
simpll |
|
| 25 |
|
simpr |
|
| 26 |
|
eqid |
|
| 27 |
1 7 6 21 22 23 24 25 26
|
fidomndrnglem |
|
| 28 |
|
eqid |
|
| 29 |
28 1
|
opprbas |
|
| 30 |
28 7
|
oppr0 |
|
| 31 |
28 6
|
oppr1 |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
28
|
opprdomn |
|
| 35 |
23 34
|
syl |
|
| 36 |
|
eqid |
|
| 37 |
29 30 31 32 33 35 24 25 36
|
fidomndrnglem |
|
| 38 |
11 6 21 28 32
|
isunit |
|
| 39 |
27 37 38
|
sylanbrc |
|
| 40 |
20 39
|
eqelssd |
|
| 41 |
1 11 7
|
isdrng |
|
| 42 |
3 40 41
|
sylanbrc |
|
| 43 |
42
|
ex |
|
| 44 |
|
drngdomn |
|
| 45 |
43 44
|
impbid1 |
|