Step |
Hyp |
Ref |
Expression |
1 |
|
fidomndrng.b |
|
2 |
|
fidomndrng.z |
|
3 |
|
fidomndrng.o |
|
4 |
|
fidomndrng.d |
|
5 |
|
fidomndrng.t |
|
6 |
|
fidomndrng.r |
|
7 |
|
fidomndrng.x |
|
8 |
|
fidomndrng.a |
|
9 |
|
fidomndrng.f |
|
10 |
8
|
eldifad |
|
11 |
|
eldifsni |
|
12 |
8 11
|
syl |
|
13 |
12
|
ad2antrr |
|
14 |
|
oveq1 |
|
15 |
|
ovex |
|
16 |
14 9 15
|
fvmpt |
|
17 |
16
|
adantl |
|
18 |
17
|
eqeq1d |
|
19 |
6
|
adantr |
|
20 |
|
simpr |
|
21 |
10
|
adantr |
|
22 |
1 5 2
|
domneq0 |
|
23 |
19 20 21 22
|
syl3anc |
|
24 |
18 23
|
bitrd |
|
25 |
24
|
biimpa |
|
26 |
25
|
ord |
|
27 |
26
|
necon1ad |
|
28 |
13 27
|
mpd |
|
29 |
28
|
ex |
|
30 |
29
|
ralrimiva |
|
31 |
|
domnring |
|
32 |
6 31
|
syl |
|
33 |
1 5
|
ringrghm |
|
34 |
32 10 33
|
syl2anc |
|
35 |
9 34
|
eqeltrid |
|
36 |
1 1 2 2
|
ghmf1 |
|
37 |
35 36
|
syl |
|
38 |
30 37
|
mpbird |
|
39 |
|
enrefg |
|
40 |
7 39
|
syl |
|
41 |
|
f1finf1o |
|
42 |
40 7 41
|
syl2anc |
|
43 |
38 42
|
mpbid |
|
44 |
|
f1ocnv |
|
45 |
|
f1of |
|
46 |
43 44 45
|
3syl |
|
47 |
1 3
|
ringidcl |
|
48 |
32 47
|
syl |
|
49 |
46 48
|
ffvelrnd |
|
50 |
1 4 5
|
dvdsrmul |
|
51 |
10 49 50
|
syl2anc |
|
52 |
|
oveq1 |
|
53 |
14
|
cbvmptv |
|
54 |
9 53
|
eqtri |
|
55 |
|
ovex |
|
56 |
52 54 55
|
fvmpt |
|
57 |
49 56
|
syl |
|
58 |
|
f1ocnvfv2 |
|
59 |
43 48 58
|
syl2anc |
|
60 |
57 59
|
eqtr3d |
|
61 |
51 60
|
breqtrd |
|